Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dia fic
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 10:51

\(T=\dfrac{\left(xy\right)^2}{zx+zy}+\dfrac{\left(yz\right)^2}{xy+xz}+\dfrac{\left(zx\right)^2}{yx+yz}\ge\dfrac{xy+yz+zx}{2}\ge\dfrac{3}{2}\sqrt[3]{\left(xyz\right)^2}=\dfrac{3}{2}\)

 

Trang Candy
Xem chi tiết
Lê Châu Linh
Xem chi tiết
camcon
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 12 2021 lúc 0:02

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{1}{2}\left(x+y+x+z\right)=\dfrac{1}{2}\left(2x+y+z\right)\)

Tương tự: \(\sqrt{2y+xz}\le\dfrac{1}{2}\left(x+2y+z\right)\) ; \(\sqrt{2z+xy}\le\dfrac{1}{2}\left(x+y+2z\right)\)

Cộng vế:

\(P\le\dfrac{1}{2}\left(4x+4y+4z\right)=4\)

\(P_{max}=4\) khi \(x=y=z=\dfrac{2}{3}\)

Xyz OLM
31 tháng 12 2021 lúc 0:02

P = \(1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)

\(=\sqrt{3.\left(4+xy+yz+zx\right)}\)

Đã biết x2 + y2 + z2 \(\ge\)xy + yz + zx

=> xy + yz + zx \(\le\dfrac{\left(x+y+z\right)^2}{3}\)

Khi đó \(P\le\sqrt{3\left(4+xy+yz+zx\right)}\le\sqrt{3\left[4+\dfrac{\left(x+y+z\right)^2}{3}\right]}\)

= 4 

Dấu "=" xảy ra <=> x = 2/3 

camcon
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 12 2021 lúc 23:17

\(\sqrt{2x+yz}=\sqrt{\left(x+y+z\right)x+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{x+2y+z}{2}\\ \Leftrightarrow P=\sum\sqrt{2x+yz}\le\dfrac{x+2y+z+2x+y+z+x+y+2z}{2}=\dfrac{4\left(x+y+z\right)}{2}=2\cdot2=4\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{2}{3}\)

Xyz OLM
30 tháng 12 2021 lúc 23:20

P = \(1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(Bunyacovski)

\(=\sqrt{3\left[4+\left(xy+yz+zx\right)\right]}\)

\(\le\sqrt{3.\left[4+\dfrac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3.\left(4+\dfrac{4}{3}\right)}\) = 4

Dấu "=" xảy ra <=> x = y = z = 2/3 

hoangngocdiep
Xem chi tiết
Tran Le Khanh Linh
12 tháng 3 2020 lúc 9:08

Bài 1: Ta có 5x+7=5(x-2)+8

Để 5x+7 chia hết cho x-2 thì 5(x-2) +8 chia hết cho x-2

=> 8 chia hết cho x-2

x nguyên => x-2 nguyên => x-2 thuộc Ư (8)={-8;-4;-2;-1;1;2;4;8}
ta có bảng

x-2-8-4-2-11248
x-6-20134610

Bài 2:

a) xy+x=-15

<=> x(y+1)=-15

=> x, y+1 thuộc Ư (-15)={-15;-5;-3;-1;1;3;5;15}

Ta có bảng

x-15-5-3-113515
y+113515-15-5-3-1
y02414-16-6-4-2
Khách vãng lai đã xóa
Tran Le Khanh Linh
12 tháng 3 2020 lúc 9:13

b) xy+2-y=9

<=> y(x-1)=7

=> y, x-1 thuộc Ư (7)={-7;-1;1;7}
Ta có bảng

y-7-117
x-1-1-771
x0-662

c) xy+2x+2y=-17

<=> x(y+2)+2(y+2)=-15

<=> (x+2)(y+2)=-15

<=> x+2; y+2 thuộc Ư (-15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng

x+2-15-5-3-113515
x-17-7-5-3-11313
y+213515-15-5-3-1
y-11313-17-7-5-3
Khách vãng lai đã xóa
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
12 tháng 3 2020 lúc 9:15

\(5x+7⋮x-2\)

\(5\left(x-2\right)+17⋮x-2\)

\(17⋮x-2\)

\(\Rightarrow x-2\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)

Bn tự lập bảng nha ! 

Khách vãng lai đã xóa
Nguyễn Minh Đăng
Xem chi tiết
Riin
Xem chi tiết
ʚTrần Hòa Bìnhɞ
20 tháng 1 2018 lúc 20:06

a , |2x+4|+|y-6|=0

=> 2 x + 4 = 0 => x = 0 

=> y - 6 = 0 => y = 6

Vậy x = 0 và y = 6

Khoa Duc
20 tháng 1 2018 lúc 20:15

a. 2x+4= 2.0+4=4
y-6=2-6=-4

=)) l4l;l-4l

dia fic
Xem chi tiết
Trần Minh Hoàng
14 tháng 1 2021 lúc 9:52

Ta có x + y + z = 1 nên z = 1 - x - y.

Bất đẳng thức cần chứng minh tương đương:

\(\dfrac{\sqrt{xy+z\left(x+y+z\right)}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)

\(\Leftrightarrow\sqrt{\left(z+x\right)\left(z+y\right)}+\sqrt{2x^2+2y^2}\ge1+\sqrt{xy}\).

Áp dụng bất đẳng thức Cauchy - Schwarz:

\(\left(z+x\right)\left(z+y\right)\ge\left(\sqrt{z}.\sqrt{z}+\sqrt{x}.\sqrt{y}\right)^2=\left(z+\sqrt{xy}\right)^2\)

\(\Rightarrow\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}=\sqrt{xy}-x-y+1\); (1)

\(\sqrt{2x^2+2y^2}=\sqrt{\left(1+1\right)\left(x^2+y^2\right)}\ge x+y\). (2)

Cộng vế với vế của (1), (2) ta có đpcm.

 

 

Nguyễn Thị Dương Cầm
Xem chi tiết
Phùng Minh Quân
16 tháng 5 2019 lúc 11:32

Có \(xy+yz+zx=xyz\)\(\Leftrightarrow\)\(\frac{xy+yz+zx}{xyz}=1\)\(\Leftrightarrow\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

\(\frac{x^2y}{y+2x}+\frac{y^2z}{z+2y}+\frac{z^2x}{x+2z}=\frac{1}{\frac{1}{x^2}+\frac{2}{xy}}+\frac{1}{\frac{1}{y^2}+\frac{2}{yz}}+\frac{1}{\frac{1}{z^2}+\frac{2}{zx}}\ge\frac{9}{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)}\)

\(=\frac{9}{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}=\frac{9}{1^2}=9\)

Dấu "=" ko xảy ra \(\Rightarrow\)\(\frac{x^2y}{y+2x}+\frac{y^2z}{z+2y}+\frac{z^2x}{x+2z}>9\)