So sánh sin20 và tan70 , cos40 và cot40
Không tính giá trị cụ thể, hãy sắp xếp các tỉ số lượng giác sau theo thứ tự từ nhỏ đến lớn: \(sin20^0,cos20^0,sin55^0,cos40^0,tan70^0\)
Nhận xét: ở các góc từ \(0^0\Rightarrow90^0\) thì \(sin\) và tan của 1 góc sẽ tỉ lệ thuận với số đo của góc
Do \(70^0>45^0\Rightarrow tan70^0>tan45^0\Rightarrow tan70^0>1\)
Mà sin, cos của mọi góc đều không lớn hơn 1
\(\Rightarrow\) \(tan70^0\) là giá trị lớn nhất
Chuyển các giá trị cos về sin, ta có: \(cos20^0=sin70^0\) ; \(cos40^0=sin50^0\)
Do đó:
\(sin20^0< sin50^0< sin55^0< sin70^0< tan70^0\)
Hay:
\(sin20^0< cos40^0< sin55^0< cos20^0< tan70^0\)
Không dùng bảng số và máy tính hãy so sánh cot50° và sin20°
\(\cot50^0=\tan40^0>\sin40^0>\sin20^0\)
Bt: Tính \(2008\cdot\sin^220^o+\sin20^o+2008\cdot\cos^220^o-\cos70^o+\tan20^o\cdot\tan70^o\)
\(=2008\left(\sin^220^o+\cos^220^o\right)+\cos70^o-\cos70^o+\frac{\sin20^o}{\cos20}.\frac{sin70}{c\text{os}70}\)
\(=2008+1=2009\)
Câu 1: Chứng minh
a) \(\dfrac{cosx+sin2x}{1+sinx-cos2x}=cotx\)
b) \(\dfrac{1+sin3x-cos6x}{cos3x+sin6x}=tan3x\)
Câu 2: Tính
a) cos10.cos50.cos70
b) sin10.sin50.sin70
c) cos20.cos40.cos60.cos60
d) sin20.sin40.sin60.sin80
Câu 3: Trong mặt phẳng Oxy, cho tam giác ABC có điểm A(-4;2) và đường cao CH : x-y-1=0; trung điểm của BC là I(-2;3). Tìm tọa độ đỉnh B
Câu 4: Trong mặt phẳng Oxy, cho tam giác ABC có điểm B(-1;2) và đường cao AH : x+y-2=0; trung điểm của AC là I(-2;1). Viết phương trình cạnh AC
Câu 5: Cho các số dương x,y thỏa mãn x+ y = \(\dfrac{1}{2}\). Tìm giá trị nhỏ nhất của
P=\(\dfrac{1}{x}+\dfrac{1}{y}\)
Câu 6: Cho số thực x thỏa mãn x>4. Tìm giá trị nhỏ nhất của \(Q=9x+\dfrac{1}{x-4}\)
Câu 7: Cho số dương x thỏa mãn 0 ≤ x ≤ 7. Tìm giá trị lớn nhất của \(Q=9x\left(7-x\right)\)
Câu 8: Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 - 2x + 2y - 7 = 0 và đường thẳng d: x + y + 1 = 0. Viết phương trình đường thẳng △ song song với đường thẳng d và cắt đường tròn (C) theo dây cung có độ dài bằng 2.
Câu 9: Trong mặt phẳng Oxy cho điểm A(-3;4) và đường thẳng d: 3x + 4y + 18 = 0. Viết phương trình đường tròn tâm A và cắt đường thẳng d theo dây cung có độ dài bằng 24
Câu 10: Trong mặt phẳng Oxy cho đường tròn (C): x2 + y2 - 2x + 2y - 7 =0 và đường thẳng d: x + y + 1=0. Viết phương trình đường thẳng △ song song với đường thẳng d và cắt đường tròn (C) theo dây cung AB sao cho tam giác ABI đều (I là tâm của (C))
Giúp em với ạ <3 Được câu nào hay câu đó :( tsau em thi rùi
Câu 5. Cho x,y dương thỏa mãn \(x+y=\dfrac{1}{2}\).Tìm giá trị nhỏ nhất của
\(P=\dfrac{1}{x}+\dfrac{1}{y}\)
Giải:
\(P=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{\dfrac{1}{2}}{xy}=\dfrac{2}{xy}\)
--> P nhỏ nhất khi \(xy\) lớn nhất
Ta có:
\(x^2+y^2\ge2xy\) ( BĐT AM-GM )
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow1\ge4xy\)
\(\Leftrightarrow xy\le\dfrac{1}{4}\)
\(\Rightarrow P\ge2:\dfrac{1}{4}=8\)
Vậy \(Min_P=8\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{4}\)
Không dùng MTBT , hãy sắp xếp các tỉ số lượng giác sau theo thứ tự tăng dần :
a) \(\cot40^o,\sin50^o,\tan70^o,\cos55^o\)
b) \(\sin49^o,\cot15^o,\tan65^o,\cos50^o,\cot41^o\)
1.Tính giá trị biểu thức:
\(A=2sin^275^o+2sin^215^o-cos50^o-cos40^o+cot40^o.cot50^o\)
\(B=cos^225^o+cos^265^o-3sin^261^o+3sin^229^o+cos^2x+tan^2x.cos^2x\)
Bài 1 chứng minh rằng sin a <tan a và cos a<cot a
Bài 2 không dùng mtbt hoặc bảng số hãy sắp xếp các tslg sau theo thứ tự tăng dần : cot40°, sin 50° ,tan70°, cos 55°
Không tính giá trịc cụ thể, hãy sắp xếp các tỉ số lượng giác sau theo thứ tự từ nhỏ đến lớn :
a) \(\sin20^0,\cos20^0,\sin55^0,\cos40^0,tg70^0\)
b) \(tg70^0,cotg60^0,cotg65^0,tg50^0,\sin25^0\)
a) Không dùng máy tính. Hãy tính: \(3\sin20-3\cos70+\frac{4\tan70}{\cot20}\)
b) Chứng minh giá trị của biểu thức sau không phụ thuộc vào số đo của góc nhọn a
\(2\tan^2a-\frac{1}{1+\sin a}-\frac{1}{1-\sin a}\)