Lập bảng biến thiên và vẽ đồ tị của hàm số \(y=x^3-2\left|x\right|+1\)
lập bảng biến thiên và vẽ đồ thị hàm số
a) y=\(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+3\right)^2\left(x\le1\right)\\2\left(x>1\right)\end{matrix}\right.\)
lập bảng biến thiên của hàm số \(y=\hept{\begin{cases}2x+1\left(x\ge0\right)\\-x^2\left(x< 0\right)\end{cases}}\)và vẽ đồ thị hàm số
Cho hàm số y= \(\frac{\left|x+1\right|+\left|x-1\right|}{\left|x+1\right|-\left|x-1\right|}\)
a) Tìm miền xác định của hàm số
b) Lập bảng biến thiên và vẽ đồ thị hàm số
Lập bảng biến thiên và vẽ đồ thị hàm số
a) y = |x-1|+|2x-4|
b) y = \(\left\{{}\begin{matrix}2x-1,x\ge1\\-x+2,x< 1\end{matrix}\right.\)
Lập bảng biến thiên và vẽ đồ thị của mỗi hàm số :
a) \(y=\left|2x-3\right|\)
b) \(y=\left|-\dfrac{3}{4}x+1\right|\)
c) \(y=x+\left|x\right|\)
a) Ta có thể viết
\(y=\left\{{}\begin{matrix}2x-3;\left(x\ge\dfrac{3}{2}\right)\\-2x+3;\left(x< \dfrac{3}{2}\right)\end{matrix}\right.\)
Luyện tập – Vận dụng 2
Lập bảng biến thiên và vẽ đồ thị hàm số \(y = {\left( {\frac{1}{3}} \right)^x}\)
\(\mathop {\lim }\limits_{x \to + \infty } {\left( {\frac{1}{3}} \right)^x} = 0;\,\,\mathop {\lim }\limits_{x \to - \infty } {\left( {\frac{1}{3}} \right)^x} = + \infty \)
Hàm số \(y = {\left( {\frac{1}{3}} \right)^x}\) nghịch biến trên toàn R
Bảng biến thiên của hàm số:
Đồ thị hàm số:
Lập bảng biến thiên và vẽ đồ thị hàm số y = x 2 - 2 | x | + 1
Tập xác định của hàm số là D = R. Ngoài ra
f ( - x ) = ( - x ) 2 - 2 | - x | + 1 = x 2 - 2 x + 1
Hàm số là hàm số chẵn. Đồ thị của nó nhận trục tung làm trục đối xứng. Để xét chiều biến thiên và vẽ đồ thị của nó chỉ cần xét chiều biến thiên và vẽ đồ thị của nó trên nửa khoảng [ 0 ; + ∞ ) , rồi lấy đối xứng qua Oy. Với x ≥ 0 có f ( x ) = x 2 - 2 x + 1
Bảng biến thiên
Đồ thị của hàm số đã cho được vẽ ở hình 40.
Cho hàm số f(x) = \(\left\{{}\begin{matrix}-x+1khix< -2\\2x+7khix\ge-2\end{matrix}\right.\)
a) Lập bảng biến thiên và vẽ đồ thị hàm số trên
b) Tìm m để phương trình f(x)=m có 2 nghiệm phân biệt
c) Tìm giá trị lớn nhất, nhỏ nhất của hàm số trên [-3; 1]
Vẽ đồ thị của hàm số và lập bảng biến thiên:
y=|x^2-4x+3|
câu này cổ hình như mọi người quan tâm nhiều
f(x) = x^2 -4x +3 =(x-1)(x-3)= (x-2)^2 -1 >=-1
|f(x)| <= 1 khi x [1;3]
cắt trục Ox tại 1, 3
đồ thị
(phác thảo không đúng tỷ lệ)