Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mạnh Trung
Xem chi tiết
Võ Đông Anh Tuấn
Xem chi tiết
Lưu Thị Thảo Ly
25 tháng 6 2017 lúc 9:54

Căn bậc hai. Căn bậc ba

Huỳnh Anh
Xem chi tiết
ʟɪʟɪ
21 tháng 4 2021 lúc 22:14

1. \(\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)

\(=\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right).0\)

\(=0\)

Nguyễn Lê Phước Thịnh
21 tháng 4 2021 lúc 22:17

Bài 1: 

Ta có: \(A=\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)

\(=\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)\)

=0

Bảo
Xem chi tiết
bui trong thanh nam
Xem chi tiết
Akai Haruma
31 tháng 8 2024 lúc 11:10

Lời giải:

$A=\frac{2011(2011+n)}{4022+n}$

Để $A$ nguyên thì: $2011(2011+n)\vdots 4022+n$

$\Rightarrow 2011^2+2011(n+4022)-2011.4022\vdots 4022+n$

$\Rightarrow 2011^2-2011.4022\vdots 4022+n$

$\Rightarrow 2011^2-2011^2.2\vdots 4022+n$

$\Rightarrow 2011^2\vdots 4022+n$

$\Rightarrow 4022+n\in\left\{\pm 1; \pm 2011; \pm 2011^2\right\}$

$\Rightarrow n\in \left\{-4023; -4021; -2011; -6033; 4040099; -4048143\right\}$

★彡✿ทợท彡★
Xem chi tiết
Nguyễn Huy Tú
11 tháng 5 2022 lúc 20:44

a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-31-12-24-4
n42517-1

 

Nguyễn Ngọc Huy Toàn
11 tháng 5 2022 lúc 20:45

a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)

\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)

\(A=\dfrac{n+1}{n-3}\)

\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)

\(A=1+\dfrac{4}{n-3}\)

Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-3=1 --> n=4

n-3=-1 --> n=2

n-3=2 --> n=5

n-3=-2 --> n=1

n-3=4 --> n=7

n-3=-4 --> n=-1

Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên

b.hemm bt lèm:vv

lehoainam
11 tháng 5 2022 lúc 20:49

cc

Sakura
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 12 2022 lúc 23:03

Bài 2:

\(A=\dfrac{x\left(x^3+1\right)}{x^2-x+1}-\dfrac{x\left(x^3-1\right)}{x^2+x+1}\)

\(=x\left(x+1\right)-x\left(x-1\right)\)

=x^2+x-x^2+x

=2x

Ngọc Mai
Xem chi tiết
Lấp La Lấp Lánh
18 tháng 9 2021 lúc 15:09

a) \(P=\dfrac{x-1+4\left(\sqrt{x}+1\right)+1}{x-1}.\dfrac{x-1}{x+2\sqrt{x}}\)

\(=\dfrac{x+4\sqrt{x}+4}{x+2\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}}\)

b) \(P=\dfrac{\sqrt{x}+2}{\sqrt{x}}=1+\dfrac{2}{\sqrt{x}}\in Z\)

Do \(\sqrt{x}>0\)

\(\Rightarrow\sqrt{x}\inƯ\left(2\right)=\left\{1;2\right\}\)

\(\Rightarrow x\in\left\{1;4\right\}\)

Nguyễn Mạnh Trung
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2022 lúc 22:27

\(A=1:\dfrac{2011+n-2011}{2011+n}=\dfrac{n+2011}{n}\)

Để A là số nguyên thì \(n\inƯ\left(2011\right)\)

hay \(n\in\left\{-1;1;2011;-2011\right\}\)