GTLN của M = \(\dfrac{4x^2}{x^4+1}\) Là
Cho biểu thức M=\(\dfrac{x^4+2}{x^6+1}+\dfrac{x^2-1}{x^4-x^2+1}-\dfrac{x^2+3}{x^4+4x^2+3}\)
a) Rút gọn M
b) Tìm GTLN của M
`a)M=(x^4+2)/(x^6+1)+(x^2-1)/(x^4-x^2+1)-(x^2+3)/(x^4+4x^2+3)`
`=(x^4+2)/(x^6+1)+(x^2-1)/(x^4-x^2+1)-(x^2+3)/((x^2+1)(x^2+3))`
`=(x^4+2)/(x^6+1)+((x^2-1)(x^2+1))/(x^6+1)-1/(x^2+1)`
`=(x^4+2+x^4-1-x^4+x^2-1)/(x^2+1)`
`=(x^4+x^2)/(x^2+1)`
`=(x^2(x^2+1))/(x^2+1)`
`=x^2`
`b)` tìm gtnn chứ?
`M=x^2>=0`
Dấu '=" `<=>x=0`
Tìm GTLN của M=\(\dfrac{4x^2}{x^4+1}\)
max =2 bài này tui đã làm cho bạn nào đó.tìm là thấy
Cho biểu thức
\(M=\dfrac{x^4+2}{x^6+1}+\dfrac{x^2-1}{x^4-x^2+1}+\dfrac{x^2+3}{x^4+4x^2+3}\)
a) Rút gọn M
b) Tìm GTLN của M
Tìm GTNN của \(P=\dfrac{4x}{\sqrt{x}-2}\left(x>4\right)\)
Tìm GTLN của \(P=\dfrac{5}{\sqrt{a}+2}\)
Tìm GTLN, GTNN của \(P=\dfrac{5\sqrt{a}+1}{a+\sqrt{a}+1}\)
Tìm GTLN của biểu thức: \(A=\left(\dfrac{x^2}{x^2-3x+2}+\dfrac{x^2}{x^2-5x+6}\right):\dfrac{x^4+x^2+1}{x^2-4x+3}\)
Bạn tham khảo lời giải tại đây:
Tìm GTLN của biểu thức: \(A=\left(\dfrac{x^2}{x^2-3x+2}+\dfrac{x^2}{x^2-5x+6}\right):\dfrac{x^4+x^2+1}{x^2-4x+3}\)
Lời giải:
ĐK: $x\neq 1;2;3$
\(A=x^2\left[\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}\right].\frac{(x-1)(x-3)}{x^4+x^2+1}\)
\(=x^2.\frac{x-3+x-1}{(x-1)(x-2)(x-3)}.\frac{(x-1)(x-3)}{x^4+x^2+1}=x^2.\frac{2(x-2)}{(x-1)(x-2)(x-3)}.\frac{(x-1)(x-3)}{x^4+x^2+1}=\frac{2x^2}{x^4+x^2+1}\)
Áp dụng BĐT AM-GM: $x^4+1\geq 2x^2$
$\Rightarrow A\leq \frac{2x^2}{2x^2+x^2}=\frac{2}{3}$
Vậy $A_{\max}=\frac{2}{3}$. Giá trị đạt tại $x^4=1$ hay $x=-1$ (do $x\neq 1$)
\(A=\left(\dfrac{4x}{x+2}-\dfrac{x^3-8}{x^3+8}\times\dfrac{4x^2-8x+16}{x^2-4}\right)\div\dfrac{16}{x+2}\times\dfrac{x^2+3x+2}{x^2+x+1}\)
\(B=\dfrac{x^2+x-2}{x^3-1}\)
a) Tìm ĐKXĐ của A, B. Rút gọn A, B
b)Tìm GTLN của A+B
Tìm GTNN và GTLN nếu có của các biểu thức
\(A=\dfrac{2x^2-2x+5}{\left(x+1\right)^2}\)
\(B=\dfrac{4x^2+x+4}{x^2+x+1}\)
Tìm GTLN của
\(A=\dfrac{x}{x^2+1}\), \(B=\dfrac{x^2}{\left(x+2\right)^2}\)
Tìm GTNN của
\(A=\dfrac{x^2+4x+4}{x}\), \(B=\dfrac{x^5+2}{x^3}\)
đối với dạng này thì mk chỉ cho cách lm thôi nha . mk sẽ lm 1 bài khó nhất còn lại bn lm tương tự cho quen .
ta có : \(A=\dfrac{x^2+4x+4}{x}\Leftrightarrow x^2+\left(4-A\right)x+4=0\)
vì phương trình này luôn có nghiệm \(\Rightarrow\Delta\ge0\)
\(\Leftrightarrow\left(4-A\right)^2-16\ge0\Leftrightarrow A^2-8A\ge0\Leftrightarrow A\left(A-8\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}A\ge0\\A-8\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A\le0\\A-8\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge8\\x\le0\end{matrix}\right.\) \(\Rightarrow A\) không có GTNN
riêng câu 2 B mk o lm đc nha bn :(