Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Võ Văn Hùng
Xem chi tiết
Huỳnh Thanh Xuân
5 tháng 3 2017 lúc 20:16

=11/6 nha bạn!

Vũ Ngọc Diệp
Xem chi tiết
HT.Phong (9A5)
1 tháng 3 2023 lúc 19:04

\(C=\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right)...\left(1+\dfrac{1}{2499}\right)\)

\(C=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}...\dfrac{2500}{2499}\)

\(C=\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}...\dfrac{50.50}{49.51}\)

\(C=\dfrac{2.2.3.3.4.4...50.50}{1.3.2.4.3.5...49.51}\)

\(C=\dfrac{2.3.4...50}{1.2.3...49}.\dfrac{2.3.4...50}{3.4.5...51}\)

\(C=50.\dfrac{2}{51}\)

\(C=\dfrac{100}{51}\)

Vũ Ngọc Diệp
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2023 lúc 14:09

a: =2+6*(-1)^2019+2026

=2028-6

=2022

b: \(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}...\cdot\dfrac{625}{624}\)

\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot\dfrac{4^2}{\left(4-1\right)\left(4+1\right)}...\cdot\dfrac{625}{\left(25-1\right)\left(25+1\right)}\)

\(=\dfrac{2\cdot3\cdot4\cdot...\cdot49}{1\cdot2\cdot3\cdot...\cdot48}\cdot\dfrac{2\cdot3\cdot4\cdot...\cdot49}{3\cdot4\cdot5\cdot...\cdot50}\)

\(=\dfrac{49}{1}\cdot\dfrac{2}{50}=\dfrac{98}{50}=\dfrac{49}{25}\)

Võ Ngọc Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 10 2023 lúc 0:27

\(E=\dfrac{\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2002}-1\right)\left(\dfrac{1}{2003}-1\right)}{\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{9999}{10000}}\)

\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{100^2}\right)}\)

\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)}\)

\(=\dfrac{\dfrac{100}{101}\cdot\dfrac{101}{102}\cdot...\cdot\dfrac{2002}{2003}}{\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)}\)

\(=\dfrac{100}{2003}:\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\right)\)

\(=\dfrac{100}{2003}:\left(\dfrac{101}{2}\right)=\dfrac{100}{2003}\cdot\dfrac{2}{101}=\dfrac{200}{202303}\)

Trần Ngọc Linh
Xem chi tiết
Trần Ngọc Linh
Xem chi tiết
Nguyễn Hữu Quang
Xem chi tiết
 Mashiro Shiina
24 tháng 6 2017 lúc 11:36

\(B=\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)\left(1+\dfrac{1}{24}\right).....\left(1+\dfrac{1}{440}\right)\left(1+\dfrac{1}{483}\right)\)

\(B=\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}.....\dfrac{441}{440}.\dfrac{484}{483}\)

\(B=\dfrac{9.16.25.....441.484}{8.15.24.....440.483}\)

\(B=\dfrac{3.3.4.4.5.5.....21.21.22.22}{2.4.3.5.4.6.....20.22.21.23}\)

\(B=\dfrac{3.4.5.....21.22}{2.3.4.....20.21}.\dfrac{3.4.5.....21.22}{4.5.6.....22.23}\)

\(B=11.\dfrac{3}{23}=\dfrac{33}{23}\)

Đỗ Thanh Hải
24 tháng 6 2017 lúc 13:13

B = \(\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}...\dfrac{121}{120}.\dfrac{144}{143}\)

B = \(\dfrac{4.9.16.25...121.144}{3.8.15.24....120.143}\)

B = \(\dfrac{2.2.3.3.4.4.5.5...11.11.12.12}{1.3.2.4.3.5.4.6...10.12.11.13}\)

B = \(\dfrac{2.3.4.5...11.12}{1.2.3.4.5...10.11}.\dfrac{2.3.4.5...11.12}{3.4.5.6.7...12.13}\)

B = 12 . \(\dfrac{2}{13}\)

B = \(\dfrac{24}{13}\)

Đỗ Thanh Hải
24 tháng 6 2017 lúc 13:14

Nhầm bạn

Phạm Ninh Đan
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 2 2021 lúc 12:12

a) Ta có: \(\left(\dfrac{9}{25}-2\cdot18\right):\left(3\dfrac{4}{5}+0.2\right)\)

\(=\left(\dfrac{9}{25}-36\right):\left(\dfrac{19}{5}+\dfrac{1}{5}\right)\)

\(=\left(\dfrac{9}{25}-\dfrac{900}{25}\right):\dfrac{20}{5}\)

\(=\dfrac{-891}{25}\cdot\dfrac{1}{4}\)

\(=-\dfrac{891}{100}\)

b) Ta có: \(\dfrac{3}{8}\cdot19\dfrac{1}{3}+\dfrac{3}{8}\cdot33\dfrac{1}{3}\)

\(=\dfrac{3}{8}\cdot\dfrac{58}{3}+\dfrac{3}{8}\cdot\dfrac{100}{3}\)

\(=\dfrac{58}{8}+\dfrac{100}{8}\)

\(=\dfrac{158}{8}=\dfrac{79}{4}\)

c) Ta có: \(15\cdot\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)

\(=15\cdot\dfrac{4}{9}-\dfrac{7}{3}\)

\(=\dfrac{20}{3}-\dfrac{7}{3}\)

\(=\dfrac{13}{3}\)

d) Ta có: \(\dfrac{1}{2}\sqrt{64}-\sqrt{\dfrac{4}{25}}+\left(-1\right)^{2007}\)

\(=\dfrac{1}{2}\cdot8-\dfrac{2}{5}-1\)

\(=4-1-\dfrac{2}{5}\)

\(=3-\dfrac{2}{5}\)

\(=\dfrac{15}{5}-\dfrac{2}{5}=\dfrac{13}{5}\)

e) Ta có: \(\left(-\dfrac{5}{2}\right)^2:\left(-15\right)-\left(0.45+\dfrac{3}{4}\right)\cdot\left(-1\dfrac{5}{9}\right)\)

\(=\dfrac{25}{4}\cdot\dfrac{-1}{15}-\left(\dfrac{9}{20}+\dfrac{15}{20}\right)\cdot\dfrac{-14}{9}\)

\(=\dfrac{-25}{60}-\dfrac{24}{20}\cdot\dfrac{-14}{9}\)

\(=\dfrac{-25}{60}+\dfrac{28}{15}\)

\(=\dfrac{-25}{60}+\dfrac{112}{60}\)

\(=\dfrac{87}{60}=\dfrac{29}{20}\)

f) Ta có: \(\left(-\dfrac{1}{3}\right)-\left(-\dfrac{3}{5}\right)^0+\left(1-\dfrac{1}{2}\right)^2:2\)

\(=-\dfrac{1}{3}-1+\left(\dfrac{1}{2}\right)^2\cdot\dfrac{1}{2}\)

\(=\dfrac{-4}{3}+\dfrac{1}{4}\cdot\dfrac{1}{2}\)

\(=\dfrac{-4}{3}+\dfrac{1}{8}\)

\(=\dfrac{-32}{24}+\dfrac{3}{24}=\dfrac{-29}{24}\)

g) Ta có: \(\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{4}\right)^{20}\)

\(=\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{2}\right)^{40}\)

\(=\left(\dfrac{1}{2}\right)^{55}\)

\(=\dfrac{1}{2^{55}}\)

h) Ta có: \(\dfrac{5^4\cdot20}{25^5\cdot4^5}\)

\(=\dfrac{5^4\cdot5\cdot2^2}{5^{10}\cdot2^{10}}\)

\(=\dfrac{5^5}{5^{10}}\cdot\dfrac{2^2}{2^{10}}\)

\(=\dfrac{1}{5^5}\cdot\dfrac{1}{2^8}\)

\(=\dfrac{1}{800000}\)

Xem chi tiết

\(A=\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)\cdot...\left(1+\dfrac{1}{2499}\right)\)

\(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot...\cdot\dfrac{2500}{2499}\)

\(=\dfrac{2\cdot2}{1\cdot3}\cdot\dfrac{3\cdot3}{2\cdot4}\cdot...\cdot\dfrac{50\cdot50}{49\cdot51}\)

\(=\dfrac{2\cdot3\cdot4\cdot...\cdot50}{1\cdot2\cdot3\cdot...\cdot49}\cdot\dfrac{2\cdot3\cdot...\cdot50}{3\cdot4\cdot...\cdot51}\)

\(=\dfrac{50}{1}\cdot\dfrac{2}{51}=\dfrac{100}{51}\)