\(8^x:2^x=16^{2011}\)
1,tìm x,y biết:
x-2011/12+x-2011/20+x-2011/30+x-2011/42+x-2011/56+x-2011/72=16/9
Tìm x:
8x : 2x = 162011
Tick cho ai làm nè :V
#)Giải :
\(8^x-2^x=16^{2011}\)
\(\Leftrightarrow\left(2^3\right)^x-2^x=\left(2^4\right)^{2011}\)
\(\Leftrightarrow2^{3x}-2^x=2^{8044}\)
\(\Leftrightarrow2^{2x}=8044\)
\(\Leftrightarrow2x=8044\)
\(\Leftrightarrow x=4022\)
8x : 2x = 162011
=> 4x = (42)2011
=> 4x = 42.2011
=> 4x = 44022
=> x = 4022
\(8^x:2^x=16^{2011}\)
\(\left(2^3\right)^x:2^x=\left(2^4\right)^{2011}\)
\(2^{3x}:2^x=2^{8044}\)
\(2^{2x}=2^{8044}\)
\(\Rightarrow2x=8044\)
\(x=8044:2\)
\(x=4022\)
Vậy \(x=4022\)
Tim x, biet: \(\frac{x-2011}{12}+\frac{x-2011}{20}+\frac{x-2011}{30}+\frac{x-2011}{42}+\frac{x-2011}{56}+\frac{x-2011}{72}=\frac{16}{9}\)
MINH DANG CAN GAP! AI NHANH VA DUNG THI MINH TICK CHO!
\(\left(x-2011\right)\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)=\frac{16}{9}\)
\(\left(x-2011\right)\cdot\frac{2}{9}=\frac{16}{9}\)
\(x-2011=8\)
\(x=2019\)
\(\frac{x-2011}{12}+\frac{x-2011}{20}+\frac{x-2011}{30}+\frac{x-2011}{42}+\frac{x-2011}{56}+\frac{x-2011}{72}=\frac{16}{9}\)
\(\left(x-2011\right)\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)=\frac{16}{9}\)
\(\left(x-2011\right)\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)=\frac{16}{9}\)
\(\left(x-2011\right)\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\left(x-2011\right)\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\left(x-2011\right)\frac{2}{9}=\frac{16}{9}\)
\(x-2011=8\Rightarrow x=2019\)
1) 8n : 2n = 162011
2) 2n + 2x+3 = 144
Giúp mình giải mấy câu này với
\(\left(2^3\right)^n\)\(:2^n\)\(=\left(2^4\right)^{2021}\)
\(2^{3n}\)\(:2^n\)\(=2^{4x2021}\)\(=2^{8084}\)
\(2^{3n-n}\)\(=2^{8084}\)
\(=>3n-n=8084\)
\(2n=8084\)
\(n=8084:2=4042\)
\(=>n=4042\)
Tính giá trị biểu thức A=|x^2+y^2+5+2x-4y|-|-(x+y-1)^2|+2xy với x=2^2011 y=16^503
A=\(\left|x^2+y^2+5+2x-4y\right|-\left|-\left(x+y-1\right)^2+2xy\right|\)
\(\Leftrightarrow A=x^2+y^2+5+2x-4y-\left|-\left(x^2+2xy-2x-2y+y^2+1\right)\right|+2xy\)
\(\Leftrightarrow A=x^2+y^2+5+2x-4y+x^2-2xy+2x+2y-y^2-1+2xy\)
\(\Leftrightarrow A=2x^2-4+4x-2y\)
thay \(x=2^{2011};y=16^{503}\) vào A ta được:
\(2.\left(2^{2011}\right)^2-4+4.\left(2^{2011}\right)-2.\left(16^{503}\right)\)
A không có giá trị
a) 92/9 + 13/5 - 56/9
b) 58/7 - (31/9 + 30/7)
c) 2/3 + 1/3 x 9/4 - 13/12
d) 41/8 - 7/4 : 11/5
e) 478/19 : 5/4 - 668/19 : 5/4
f) 32/21 x 49/45 : 16/22 x 15/33
g) 2020x2018+9 / 2019x2020-2011.
Giup minh voi minh dang can gap!!!
58/7 - (31/9 + 30/7)
= 58/7 - 31/9 - 30/7
= (58/7 - 30/7) - 31/9
= 28/7- 31/9
= 4 - 31/9 = 36/9 - 31/9
= 5/9
478/19÷(-5/4)-668/19÷(-5/4)
=(478/19-668/19):(-5/4)
=-10 . (-4/5)
=8
Giup mik bai nay nha : |x|=(-1/2)^2-1^2011+2/4×(-1/2)+√25/16
a/Tính nhanh:
1 x 2 x 3 + 2 x 4 x 6 + 3 x 6 x 9 + 4 x 8 x 12
b/So sánh A và B biết:
A=2010 +2011 / 2011 +2012 B=2010/2011 + 2011/2012
ai đúng thì mình sẽ tick nha
a
a. 1⋅2⋅3+2⋅4⋅6+3⋅6⋅9+4⋅8⋅12
= 6+2⋅4⋅6+3⋅6⋅9+4⋅8⋅12
= 6+48+3⋅6⋅9+4⋅8⋅12
= 6+48+162+4⋅8⋅12
= 6+48+162+384
= 600
b . Ta có \(A=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}.\)
Ta có : \(\frac{2010}{2011+2012}< \frac{2010}{2011}\) và \(\frac{2011}{2011+2012}< \frac{2011}{2012}\)
=> \(\frac{2010+2011}{2011+2012}< \frac{2010}{2011}+\frac{2011}{2012}\)
=> A < B
a) x+2/x-2-1/x=2/x*(x-2)
b)2/2x-6+2/2x+2+2x/(x+1)*(3-x)=0
c) x+1/2017+x+2/2016=x+3/2015+x+4/2014
d) x-45/5+x-44/6+x-43/7+x-42/8=4
e) x-3/2011+x+2/2012=x-2012/2+x-2011/3
a) ĐKXĐ: \(x\notin\left\{0;2\right\}\)
Ta có: \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=\dfrac{2}{x\left(x-2\right)}\)
Suy ra: \(x^2+2x-x+2-2=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
Vậy: S={-1}