Cho hàm số y=/1-3x/. Tìm x để \(f\left(x_0\right)\)= \(f\left(-x_0\right)\)
Bạn Nam cho rằng: “Nếu hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0},\) còn hàm số \(y = g\left( x \right)\) không liên tục tại \({x_0},\) thì hàm số \(y = f\left( x \right) + g\left( x \right)\) không liên tục tại \({x_0}\)”. Theo em, ý kiến của bạn Nam đúng hay sai? Giải thích.
Theo em ý kiến của bạn Nam là đúng.
Ta có: Hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0}\) nên \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
Hàm số \(y = g\left( x \right)\) không liên tục tại \({x_0}\) nên \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) \ne g\left( {{x_0}} \right)\)
Do đó \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) + \mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) \ne f\left( {{x_0}} \right) + g\left( {{x_0}} \right)\)
Vì vậy hàm số không liên tục tại x0.
Cho \(f\left( x \right)\) và \(g\left( x \right)\) là hai hàm số có đạo hàm tại \({x_0}\). Xét hàm số \(h\left( x \right) = f\left( x \right) + g\left( x \right)\).
Ta có \(\frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}}\)
nên \(h'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{h\left( x \right) - h\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} + \mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = ... + ...\)
Chọn biểu thức thích hợp thay cho chỗ chấm để tìm \(h'\left( {{x_0}} \right)\).
Ta có: \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = f'\left( {{x_0}} \right);\mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = g'\left( {{x_0}} \right)\)
Vậy \(h'\left( {{x_0}} \right) = f'\left( {{x_0}} \right) + g'\left( {{x_0}} \right)\).
Cho hàm số \(y = f(x)\) xác định trên khoảng \((a;b)\) và \({x_0} \in (a;b)\). Điều kiện cần và đủ để hàm số \(y = f(x)\) liên tục tại \({x_0}\) là:
A. \(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = f\left( {{x_0}} \right)\).
B. \(\mathop {\lim }\limits_{x \to x_0^ - } f(x) = f\left( {{x_0}} \right)\).
C. \(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = \mathop {\lim }\limits_{x \to x_0^ - } f(x)\).
D. \(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = \mathop {\lim }\limits_{x \to x_0^ - } f(x) = f\left( {{x_0}} \right)\).
Theo lí thuyết ta chọn đáp án D.
Cho hàm số \(y=f\left(x\right)\) xác định trên khoảng (a; b) chứa điểm \(x_0\)
Chứng minh rằng nếu \(\lim\limits_{x\rightarrow x_0}\dfrac{f\left(x\right)-f\left(x_0\right)}{x-x_0}=L\) thì hàm số \(f\left(x\right)\) liên tục tại điểm \(x_0\) ?
Nhận biết tiếp tuyến của đồ thị hàm số
Cho hàm số \(y = f\left( x \right)\) có đồ thị (C) và điểm \(P\left( {{x_0};f\left( {{x_0}} \right)} \right) \in \left( C \right).\) Xét điểm \(Q\left( {x;f\left( x \right)} \right)\) thay đổi trên (C) với \(x \ne {x_0}.\)
a) Đường thẳng đi qua hai điểm P, Q được gọi là một là một cát tuyến của đồ thị (C) (H.9.3). Tìm hệ số góc kPQ của cát tuyến PQ.
b) Khi \(x \to {x_0}\) thì vị trí của điểm \(Q\left( {x;f\left( x \right)} \right)\) trên đồ thị (C) thay đổi như thế nào?
c) Nếu điểm Q di chuyển trên (C) tới điểm P mà kPQ có giới hạn hữu hạn k thì có nhận xét gì về vị trí giới hạn của cát tuyến QP?
a, Hệ số góc của cát tuyến PQ là \(k_{PQ}=\dfrac{f\left(x\right)-f\left(x_0\right)}{x-x_0}\)
b, Khi \(x\rightarrow x_0\) thì vị trí của điểm \(Q\left(x;f\left(x\right)\right)\) trên đồ thị (C) sẽ tiến gần đến điểm \(P\left(x_0;f\left(x_0\right)\right)\) và khi \(x=x_0\) thì hai điểm này sẽ trùng nhau.
c, Nếu điểm Q di chuyển trên (C) tới điểm P mà \(k_{PQ}\) có giới hạn hữu hạn k thì cát tuyến PQ cũng sẽ tiến đến gần vị trí tiếp tuyến của đồ thị (C) tại điểm P. Vì vậy, giới hạn của cát tuyến QP sẽ là đường thẳng tiếp tuyến tại điểm P
Cho hàm số \(f\left( x \right) = x + 1\) với \(x \in \mathbb{R}.\)
a) Giả sử \({x_0} \in \mathbb{R}.\) Hàm số \(f\left( x \right)\) có liên tục tại điểm \({x_0}\) hay không?
b) Quan sát đồ thị hàm số \(f\left( x \right) = x + 1\) với \(x \in \mathbb{R}\) (Hình 13), nếu nhận xét về đặc điểm của đồ thị hàm số đó.
a) Ta có \(f\left( {{x_0}} \right) = {x_0} + 1;\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to {x_0}} x + 1 = {x_0} + 1\)
\( \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
Vậy hàm số \(f\left( x \right)\) liên tục tại \({x_0}.\)
b) Dựa vào đồ thị hàm số ta thấy: Đồ thị hàm số là một đường thẳng liền mạch với mọi giá trị \(x \in \mathbb{R}.\)
Tính đạo hàm \(f'\left( {{x_0}} \right)\) tại điểm \({x_0}\) bất kì trong các trường hợp sau:
a) \(f\left( x \right) = c\) (c là hằng số);
b) \(f\left( x \right) = x.\)
a: \(f'\left(x_0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{c-c}{x-x0}=0\)
b: \(f'\left(x0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{x-x0}{x-x0}=1\)
Cho hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{x + 1}&{khi\,\,1 < x \le 2}\\k&{khi\,\,x = 1}\end{array}} \right.\).
a) Xét tính liên tục của hàm số tại mỗi điểm \({x_0} \in \left( {1;2} \right)\).
b) Tìm \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right)\) và so sánh giá trị này với \(f\left( 2 \right)\).
c) Với giá trị nào của \(k\) thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k\)?
a) Với mọi điểm \({x_0} \in \left( {1;2} \right)\), ta có: \(f\left( {{x_0}} \right) = {x_0} + 1\).
\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + 1} \right) = {x_0} + 1\).
Vì \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right) = {x_0} + 1\) nên hàm số \(y = f\left( x \right)\) liên tục tại mỗi điểm \({x_0} \in \left( {1;2} \right)\).
b) \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {x + 1} \right) = 2 + 1 = 3\).
\(f\left( 2 \right) = 2 + 1 = 3\).
\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right)\).
c) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} \right) = 1 + 1 = 2\)
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k \Leftrightarrow 2 = k \Leftrightarrow k = 2\)
Vậy với \(k = 2\) thì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = k\).
Tìm đạo hàm của hso \(f\left(x\right)=\dfrac{x}{\left(1+x\right)\left(2+x\right)\left(3+x\right)...\left(2017+x\right)}\) có đạo hàm tại \(x_0=0\)?
Đặt \(g\left(x\right)=\left(1+x\right)\left(2+x\right)...\left(2017+x\right)\)
\(\Rightarrow g\left(0\right)=1.2.3...2017=2017!\)
\(f\left(x\right)=\dfrac{x}{g\left(x\right)}\Rightarrow f'\left(x\right)=\dfrac{g\left(x\right)-x.g'\left(x\right)}{g^2\left(x\right)}\)
\(\Rightarrow f'\left(0\right)=\dfrac{g\left(0\right)-0.g'\left(x\right)}{\left[g\left(0\right)\right]^2}=\dfrac{g\left(0\right)}{\left[g\left(0\right)\right]^2}=\dfrac{1}{g\left(0\right)}=\dfrac{1}{2017!}\)