tìm hệ số a,b biết \(x^{2016}+ax^2+bx+2⋮\left(x^2-1\right)\)
Tìm hệ số a, b biết \(x^{2016}+ax^2+bx+2⋮x^2-1\)
Áp dụng đ/lí Bơ-du, để :
\(x^{2016}+ax^2+bx+2⋮x^2-1\) thì 1 là nghiệm của đa thức kia.
\(\left(1\right)^{2016}+a.\left(1\right)^2+b.1+2=0\)
\(1+a+b+2=0\)
a+b=-3
Cho hàm số \(y=f\left(x\right)=ax^2+bx+c\)
Xác định các hệ số \(a,b,c\) biết \(f\left(0\right)=1\),\(f\left(1\right)=2\),\(f\left(2\right)=4\)
Giúp mình với :3?
f(0) = 1
\(\Rightarrow\) a.02 + b.0 + c = 1
\(\Rightarrow\) c = 1
Vậy hệ số a = 0; b = 0; c = 1
f(1) = 2
\(\Rightarrow\) a.12 + b.1 + c = 2
\(\Rightarrow\) a + b + c = 2
Vậy hệ số a = 1; b = 1; c = 1
f(2) = 4
\(\Rightarrow\) a.22 + b.2 + c = 4
\(\Rightarrow\) 4a + 2b + c = 4
Vậy hệ số a = 4; b = 2; c = 1
Chúc bn học tốt! (chắc vậy :D)
Cho đa thức \(f\left(x\right)=ax^2+bx+2020\) có các hệ số a,b là các số hữu tỉ và \(f\left(\sqrt{3}-1\right)=2021\). Tìm a,b và tính \(f\left(1+\sqrt{3}\right)\)
\(f\left(x\right)=ax^2+bx+2020\\ \Leftrightarrow f\left(\sqrt{3}-1\right)=a\left(4-2\sqrt{3}\right)+b\left(\sqrt{3}-1\right)+2020=2021\\ \Leftrightarrow4a-2a\sqrt{3}+b\sqrt{3}-b-1=0\\ \Leftrightarrow\left(4a-b-1\right)-\sqrt{3}\left(2a-b\right)=0\\ \Leftrightarrow4a-b-1=\sqrt{3}\left(2a-b\right)\)
Vì a,b hữu tỉ nên \(4a-b-1;2a-b\) hữu tỉ
Mà \(\sqrt{3}\) vô tỉ nên \(\sqrt{3}\left(2a-b\right)\) hữu tỉ khi \(2a-b=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a-b-1=0\\2a-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(1+\sqrt{3}\right)=\dfrac{1}{2}\left(4+2\sqrt{3}\right)+1+\sqrt{3}+2020=2023+2\sqrt{3}\)
1.tìm a,b để:
a)\(x^3+ax+bx+6⋮\left(x-1\right)\)
b)\(x^4+ax^3+bx^2+5x+1⋮\left(x+1\right)^2\)
c)\(^{x^4+3x^3+ax^2+bx+5⋮\left(x-2\right)^2}\)
d)\(x^4+10x^3+ax^2+bx+7⋮\left(x+2\right)^2\)
e)\(x^4+ax^3+5x^2+bx+1⋮x-1\)
2.Cho a+b+c=0.tính\(\left(a+b+c\right)^3+\left(b+a-c\right)^3+\left(c+a-b\right)^3\)
bài 2:
\(A=\left(a+b+c\right)^3+\left(b+a-c\right)^3+\left(c+a-b\right)^3\)
\(=\left(c+b+a-2c\right)^3+\left(c+a+b-2b\right)^3\)
\(=\left(-2c\right)^3+\left(-2b\right)^3=-8\left(b+c\right)\)
sao nữa nhỉ :v
Tìm hệ số a,b,c biết
a, \(-3x^2\left(2ax^2-bx+c\right)=6x^5+9x^4-3c^2\forall x\)
b,\(\left(x^2+cx+2\right)\left(a+b\right)=x^3+x^2-2\forall x\)
c,\(\left(ax^2+bx+c\right)+\left(x+3\right)=x^2+2x-3x\forall x\)
Help me!!
cho hai đa thức \(f\left(x\right)=\left(x-1\right)\left(x-3\right)\) và\(g\left(x\right)=x^3-ax^2+bx-3\)
tìm hệ số a,b biết rằng nghiệm của đa thức g(x) cũng là nghiệm của đa thức f(x)
\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)
=> x = 1 và x = 3 là nghiệm của đa thức f(x)
Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
=> nghiệm của đa thức g(x) là x = { 1; 3 }
Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)
\(\Rightarrow-a+b=2\)(1)
Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)
\(\Rightarrow3a-b=8\)(2)
Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10
=> 2a = 10 => a = 5
=> - 5 + b = 2 => b = 7
Vậy a = 5 ; b = 7
(x-1)(x-3)=0
=>x-1=0 hoặc x-3=0
=>x=1 hoặc x=3
Vậy nghiệm của f(x) là 1 và 3
Nghiệm của g(x) cũng là 1 và 3
Với x=1 ta có g(x)=1+a+b-3=0
=>a+b-2=0
a+b=2
Với x=3 ta có g(x)=27-9a+3b-3=0
=>24-9a+3b=0
=>8-3a+b=0
=>3a-b=8
a=\(\frac{8+b}{3}\)
Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)
Đặt \(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy 2 nghiệm của \(f\left(x\right)\) là 1 và 3.
Vì nghiệm của \(g\left(x\right)\) cũng là nghiệm của \(f\left(x\right)\) hay ngược lại, hay 1 và 3 vào \(g\left(x\right)\), ta được:
\(\hept{\begin{cases}g\left(1\right)=-2-a+b\\g\left(3\right)=24-9a+3b\end{cases}\Leftrightarrow\hept{\begin{cases}-a+b=2\\-9a+3b=-24\end{cases}\Leftrightarrow}\hept{\begin{cases}3\left(-a+b\right)=3.2\\-9a+3b=-24\end{cases}\Leftrightarrow}\hept{\begin{cases}-3a+3b=6\\-9a+3b=-24\end{cases}}}\Rightarrow\left(-3a+3b\right)-\left(-9a+3b\right)=6-\left(-24\right)\Leftrightarrow-3a+3b+9a-3b=6+24\Leftrightarrow6a=30\Leftrightarrow a=5\Rightarrow-5+b=2\Leftrightarrow b=2+5=7\)
Vậy a=5 và b=7
cho f(x)=\(\left\{{}\begin{matrix}2-ax\left(x\le-1\right)\\x^2-bx+2\left(-1< x< 1\right)\\4x+a\left(x\ge1\right)\end{matrix}\right.\) tìm a,b để hàm số liên tục trên R
help pls
\(f\left(-1\right)=\lim\limits_{x\rightarrow-1^-}f\left(x\right)=\lim\limits_{x\rightarrow-1^-}\left(2-ax\right)=2+a\)
\(\lim\limits_{x\rightarrow-1^+}f\left(x\right)=\lim\limits_{x\rightarrow-1^+}\left(x^2-bx+2\right)=3+b\)
\(f\left(1\right)=\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\left(4x+a\right)=4+a\)
\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(x^2-bx+2\right)=3-b\)
Hàm liên tục trên R khi và chỉ khi:
\(\left\{{}\begin{matrix}2+a=3+b\\4+a=3-b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-1\end{matrix}\right.\)
Tìm a, b biết:
1./ \(x^4-3x+2=\left(x-1\right)\left(x^3+bx^2+ax-2\right)\)
2./ \(x^4+x^3-x-1=\left(x^2-1\right)\left(x^2+ax+b\right)\)
Giải hộ mình nha, mình cần gấp !
cho đa thức \(f\left(x\right)=ax^2+bx+c\)
a) xác định hệ số a,b,c biết \(f\left(0\right)=1;f\left(1\right)=0;f\left(-1\right)=10\)
b) tìm nghiệm của đa thức vừa xác định
Ta có: f(0)=1
<=> ax2 +bx+c=1
<=> c=1
f(1)=0
<=>ax2 +bx+c=0
<=> a+b+c=0
mà c=1
=>a+b=-1(1)
f(-1)=10
<=> ax2 +bx +c=10
<=>a-b+c=10
mà c=1
=>a-b=9(2)
Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9
<=> 2b=-10
<=> b=-5
=>a=4
Vậy a=4,b=-5,c=1