cho a2+a+1=0.tính giá trị của biểu thức P=a2013+\(\frac{1}{a^{2013}}\)
cho a1 + a2 + ... + a2013 + a2014 khác 0 và a1/a2=a2/a3=a3/a4...=a2013/a2014=a2014/a1
tính giá trị của biểu thức Q = (a1+a2+...+a2014)2/a21+2a22+3a23+...+2014a22014
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_{2013}}{a_{2014}}=\dfrac{a_{2014}}{a_1}=\dfrac{a_1+a_2+...+a_{2014}}{a_1+a_2+...+a_{2014}}=1\\ \Leftrightarrow a_1=a_2=...=a_{2014}\\ \Leftrightarrow Q=\dfrac{\left(2014a_1\right)^2}{a_1^2\left(1+2+...+2014\right)}=\dfrac{2014^2\cdot a_1^2}{a_1^2\cdot\dfrac{2015\cdot2014}{2}}=\dfrac{2\cdot2014^2}{2015\cdot2014}=\dfrac{2\cdot2014}{2015}=...\)
cho a1 +a2+...+a2013=0
và a1+a2=a3+a4=...=a2013+a1=1
tính a1 chia cho a2013
Giúp mình nhe! 1;2;3;..;2013 là số thứ tự đó
Cho a1,a2,..............a2013, biết ak= 2k+1/(k2+k)2 với mọi k = 1,2,3,4,.........2013
Tính tổng S=a1 +a2+a3+.........+a2013
Bài 1: Cho B = \(x^{2013}-2014x^{2012}+2014x^{2011}-2014x^{2010}+...-2014x^2+2014x-1\)
Tính giá trị của biểu thức B với x=2013.
Bài 2: Cho các số a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị của biểu thức : M=\(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
cho 2014=2013+1 thay vào ta có:\(B=x^{2013}-\left(2013+1\right)x^{2012}+\left(2013+1\right)x^{2011}-...-\left(2013+1\right)x^2+\left(2013+1\right)x-1\)
\(=x^{2013}-\left(x+1\right)x^{2012}+\left(x+1\right)x^{2011}-...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...-x^3-x^2+x^2+x-1\)
\(=x-1=2013-1=2012\)
tính giá trị của biểu thức
A=a2(a+b)-b(a2-b2)+2013 với a=1,b= -1
\(A=a^2\left(a+b\right)-b\left(a^2+b^2\right)+2013\)
Thay a=1;b=-1 vào biểu thức A ta có:
\(A=1\left(1+\left(-1\right)\right)-\left(-1\right)\left(1-1\right)+2013\)
\(=0-0+2013\)
\(=2013\)
tính giá trị của biểu thức
A=a2(a+b)-b(a2-b2)+2013 với a=1,b= -1
\(A=a^2\left(a+b\right)-b\left(a^2-b^2\right)+2013\)
\(=a^2\left(a+b\right)-b\left(a-b\right)\left(a+b\right)+2013\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+2013\)
\(=\left(1-1\right)\left(a^2-ab+b\right)^2+2013=0+2013=2013\)
B=m(m-n+1)-n(n+1-m) với m= -\(\dfrac{2}{3}\)n= -\(\dfrac{1}{3}\)
tính giá trị của các biểu thức sau
cho các số nguyên a,b,c \(\ne\)0 thỏa mãn: ab+1=c(a-b+c).tính giá trị của biểu thức A=\(\frac{2013.a-b}{2013.a+b}+\frac{2014.a-b}{2014.a+b}\)
Cho a,b,c là 3 số thực khác không thỏa mãn:
\(\hept{\begin{cases}a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\\a^{2013}+b^{2013}+c^{2013}=1\end{cases}}\)
Hãy tính giá trị của biểu thức: \(Q=\frac{1}{a^{2013}}+\frac{1}{b^{2013}}+\frac{1}{c^{2013}}\)
\(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)+2abc=0\)
=>\(\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
=>a=-b hoặc a=-c hoặc b=-c (1)
=>a=1 hoăc b=1 hoặc c=1 (2)
từ 1 và 2 => Q=1
a,Chứng minh bđt:
1,(a-1)(a-3)(a-4)(a-6)+9 ≥ 0
2,a2/b+c-a+b2/c+a-b+c2/a+b-c ≥ a+b+c (a,b,c là độ dài 3 cạnh tam giác)
b,Cho a2-4a+1=0.Tính giá trị của biểu thức A=a4+a2+1/a2
c,Cho a,b,c thỏa mãn 1/a+1/b+1/c=1/a+b+c.Tính giá trị của biểu thức M=(a5+b5)(b7+c7)(c2013+a2013)
1: (a-1)(a-3)(a-4)(a-6)+9
=(a^2-7a+6)(a^2-7a+12)+9
=(a^2-7a)^2+18(a^2-7a)+81
=(a^2-7a+9)^2>=0
b: \(A=\dfrac{a^4-4a^3+a^2+4a^3-16a+4+16a-3}{a^2}=\dfrac{16a-3}{a^2}\)
a^2-4a+1=0
=>a=2+căn 3 hoặc a=2-căn 3
=>A=11-4căn 3 hoặc a=11+4căn 3
\(\frac{a1}{a2}\)= \(\frac{a2}{a3}\) =...=\(\frac{a2013}{a1}\) tính M=\(\frac{a^31+a^32+..+a^32013}{\left(a1+a2+a3+..+2013\right)^3}\)
giúp mình vs mình đang cần gấp