Giai PT
5x^2 -23 =0
Giai PT
5x^2 -23 =0
\(5x^2-23=0\)
\(\Rightarrow5x^2=23\)
\(\Leftrightarrow x^2=\frac{23}{5}\)
\(\Rightarrow x=\sqrt{4,6}=2,144....\)
Giai PT: (x^2+5x)^2-2(x^2+5x)-24=0
Giai Pt sau | 4x + 2| - 5x + 3 = 0 nhận được nghiệm?
Giai Pt sau |-4x| = 2 ( x + 1) ta nhận được nghiệm?
Giai Pt sau |x + 2| + x^2 - ( 3 + x) x = 0 ta nhận được nghiệm?
giai pt sau
2x^4-5x^2+6=0
đặt \(x^2=t\left(t\ge0\right)\)
Khi đó pt trở thành \(2t^2-5t+6=0\)
=> pt vô nghiệm !
_Kudo_
Đặt t = x2 (t \(\ge\) 0)
Khi đo ta có pt: 2t2 - 5t + 6 = 0
<=> 2(t2 - \(\frac{5}{2}\)t + 3) = 0
<=> 2(t2 - \(\frac{5}{2}\)t + \(\frac{25}{16}\) + \(\frac{23}{16}\)) = 0
<=> 2(t - \(\frac{5}{4}\))2 + \(\frac{23}{8}\) = 0
<=> 2(t - \(\frac{5}{4}\))2 = -\(\frac{23}{8}\)(VN)
Vậy pt vô nghiệm
2x4-5x2+6=0
Đặt x2 = t(t ≥ 0)
Khi đó pt trở thành 2t2 − 5t + 6 = 0
=> pt vô nghiệm !
giai pt : x^4+2x^3+5x^2+4x-12=0
Phân tích đa thức thành nhân tử , ta đươc :
\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x_1=-2\\x_2=1\end{array}\right.;x^2+x+6=\left(x+\frac{1}{2}\right)^2+5\frac{3}{4}\ne0\forall x.\)
Vậy pt đã cho các nghiệm : \(x_1=-2;x_2=1.\)
Giai pt: 2x3 - 5x2 + 3x = 0
2x3-2x2-3x2+3x=0
<=>2x(x-1)-3x(x-1)=0
<=>(x-1)(2x-3x)=0
<=>-x(x-1)=0
Th1:-x=0
<=>x=0
Th2:x-1=0
<=>x=1
Vậy phương trình có tập no là S=(0, 1)
\(2x^3-5x^2+3x=0\)
\(\Leftrightarrow2x^3-2x^2-3x^2+3x=0\)
\(\Leftrightarrow2x\left(x-1\right)-3x\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-3x\right)=0\)
\(\Leftrightarrow-x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\\x=1\end{matrix}\right.\)
2x3-2x2-3x2+3x=0
<=>2x(x-1)-3x(x-1)=0
<=>(x-1)(2x-3x)=0
<=>-x(x-1)=0
\(\left\{{}\begin{matrix}-x=0\\x-1=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy phương trình có tập no là S=(0, 1)
giai các pt
5x - 10 = 0
giai cac pt sau:
2x^2-5x+2=0
3x^2-7x-20=0
x^3+x^2+4=0
x^3-5x^2+8x-4=0
a) 2x2-4x-x+2=0
=> 2x(x-2)-(x-2)=0
=> (2x-1)(x-2)=0
=> \(\left[{}\begin{matrix}2x-1=0\\x-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
b) 3x2-12x+5x-20=0
=> 3x(x-4)+5.(x-4)=0
=> (x-4)(3x+5)=0
=> \(\left[{}\begin{matrix}x-4=0\\3x+5=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=4\\x=-\dfrac{5}{3}\end{matrix}\right.\)
c)x3+2x2-x2-2x+2x+4=0
=> x2(x+2)-x(x+2)+2(x+2)=0
=>(x2-x+2)(x+2)=0
=> x=-2( vi x2-x+2>0)
d) x3-x2-4x2+4x+4x-4=0
=> x2(x-1)-4x(x-1)+4(x-1)=0
=>(x-1)(x2-4x+4)=0
=> \(\left[{}\begin{matrix}x-1=0\\x^2-4x+4=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2x2-5x+2=0
⇔2x2-x-4x+2=0
⇔x(2x-1)-2(2x-1)=0
⇔(x-2)(2x-1)=0
⇔\(\left[{}\begin{matrix}x-2=0\\2x-1=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=2\\2x=1\Leftrightarrow x=\dfrac{1}{2}\end{matrix}\right.\)
sậy S=\(\left\{2;\dfrac{1}{2}\right\}\)
x3+x2+4=0
⇔x3+2x2-x2-2x+2x+4=0
⇔(x3+2x2)-(x2+2x)+(2x+4)=0
⇔x2(x+2)-x(x+2)+2(x+2)=0
⇔(x+2)(x2-x+2)=0
⇔x+2=0 và x2-x+2=0
⇔x=-2 và \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\)(vô lý)
vậy S={-2}
Giai pt = CT nghiệm thu gọn: 5x^2-4(m+1)+2=0
\(5x^2-4\left(m+1\right)x+2=0\)
Xét \(\Delta'=4\left(m^2+2m+1\right)-10=4m^2+8m-6\)
Nếu \(\Delta'< 0\)=> PT vô nghiệm
Nếu \(\Delta'=0\) thì PT có nghiệm kép \(x_1=x_2=\frac{2\left(m+1\right)}{5}\)
Nếu \(\Delta'>0\)thì PT có 2 nghiệm phân biệt \(\left\{{}\begin{matrix}x_1=\frac{2\left(m+1\right)-\sqrt{4m^2+8m-6}}{10}\\x_2=\frac{2\left(m+1\right)+\sqrt{4m^2+8m-6}}{10}\end{matrix}\right.\)