\(\dfrac{\sqrt{x-2}}{|x-4|+|x^2-4x|}\)tìm tập xác định của hàm số
Tìm tập xác định D của hàm số y = \(\dfrac{\sqrt{x+2}}{x\sqrt{x^2-4x+4}}\)
I. HÀM SỐ, TXĐ, CHẴN LẺ, ĐƠN ĐIỆU, ĐỒ THỊ.
1. TXĐ CỦA HÀM SỐ
Câu 1.Tìm tập xác định của hàm số y=\(\dfrac{\sqrt{x-1}}{x-3}\)
Câu 2.Tìm tập xác định của hàm số y= \(\sqrt[3]{x-1}\)
Câu 3. Tìm tập xác định của hàm số y=\(\dfrac{\sqrt[3]{1-x}+3}{\sqrt{x+3}}\)
Câu 4. Tìm tập xác định của hàm số y=\(\sqrt{\left|x-2\right|}\)
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
Tìm tập xác định của hàm số :
f. y=\(\dfrac{x}{\sqrt{x+1}-\sqrt{7-2x}}\)
g.y=\(\dfrac{2}{\sqrt{x+1}}+\dfrac{\sqrt{x+2}}{x^2-4}\)
h.y=\(\dfrac{3}{|x+1|-|x-2|}\)
h: ĐKXĐ: |x+1|-|x-2|<>0
=>|x+1|<>|x-2|
=>x-2<>x+1 và x+1<>-x+2
=>2x<>1
=>x<>1/2
g: ĐKXĐ: x+1>0 và x+2>=0 và x^2-4<>0
=>x>-2 và x>-1 và x<>2; x<>-2
=>x>-1; x<>2
f: ĐKXĐ: x+1>=0 và 7-2x>=0 và x+1<>7-2x
=>3x<>6 và -1<=x<=7/2
=>x<>2 và -1<=x<=7/2
f.
\(x+1>0\) và \(7-2x>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x< \dfrac{7}{2}\end{matrix}\right.\)
\(\Rightarrow\) TXĐ: \(D=(-1;\dfrac{7}{2})\)
g.
\(x+1>0\) và \(x^2-4\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x\ne2\\x\ne-2\end{matrix}\right.\)
\(\Rightarrow\) TXĐ: \(D=\left(-1;+\infty\right)\backslash2\)
Tìm tập xác định của hàm sô \(y=\sqrt{x+2}+\dfrac{x^3}{4\left|x\right|-3}\) và hàm số \(y=\dfrac{x}{\left|x\right|x+1}-\sqrt{3-x}\)
Tìm tập xác định của hàm số \(y=\dfrac{x-2}{\sqrt{2x+4}-\sqrt{4-2x}}\).
ĐKXĐ: \(\left\{{}\begin{matrix}2x+4>=0\\4-2x>=0\\\sqrt{2x+4}-\sqrt{4-2x}< >0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-2\\x< =2\\2x+4< >4-2x\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2< =x< =2\\x< >0\end{matrix}\right.\)
Vậy: TXĐ là D=[-2;2]\{0}
bài 1 tìm tập xác định của các hàm số
a) y= \(\dfrac{4x^2+1}{x^3-x}\)
b) y= \(\dfrac{5\sqrt{x}}{\left|x\right|-1}\)
c) y = \(\dfrac{2x-1}{\sqrt[3]{x^2-1}}\)
Lời giải:
a. ĐKXĐ: $x^3-x\neq 0$
$\Leftrightarrow x(x-1)(x+1)\neq 0$
$\Leftrightarrow x\neq 0;\pm 1$
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{0;\pm 1\right\}\)
b.
ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ |x|-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq \pm 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 1\end{matrix}\right.\)
TXĐ:
\([0;+\infty)\setminus \left\{1\right\}\)
c.
ĐKXĐ: \(x^2-1\neq 0\Leftrightarrow x\neq \pm 1\)
TXĐ: \(\mathbb{R}\setminus \left\{\pm 1\right\}\)
Tìm tập xác định của hàm số
\(y=f\left(x\right)=\dfrac{\sqrt{4\pi^2-x^2}}{cos\left(x\right)}\)
Hàm số xác định khi: \(\left\{{}\begin{matrix}4\pi^2-x^2\ge0\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2\pi\le x\le2\pi\\x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
Tìm Tập xác định của các hàm số sau:
\(d.y=\dfrac{2x-1}{\sqrt{x\left|x\right|-4}}\\ e.y=\dfrac{x^2+2x+3}{\left|x^2-2x\right|+\left|x-1\right|}\\ f.y=\dfrac{\sqrt{x+2}}{x\left|x\right|+4}\\ g.y=\dfrac{\sqrt{x\left|x\right|+4}}{x}\)
d.
ĐKXĐ: \(x\left|x\right|-4>0\)
\(\Leftrightarrow x\left|x\right|>4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x^2>4\end{matrix}\right.\) \(\Leftrightarrow x>2\)
e.
ĐKXĐ: \(\left|x^2-2x\right|+\left|x-1\right|\ne0\)
Ta có:
\(\left|x^2-2x\right|+\left|x-1\right|=0\Leftrightarrow\left\{{}\begin{matrix}x^2-2x=0\\x-1=0\end{matrix}\right.\) (ko tồn tại x thỏa mãn)
\(\Rightarrow\) Hàm xác định với mọi x hay \(D=R\)
f.
ĐKXĐ: \(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\left|x\right|+4\ne0\end{matrix}\right.\)
Xét \(x\left|x\right|+4=0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x^2+4=0\left(vn\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-x^2+4=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=-2\)
Hay \(x\left|x\right|+4\ne0\Leftrightarrow x\ne-2\)
Kết hợp với \(x\ge-2\Rightarrow x>-2\)
g.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\x\left|x\right|+4\ge0\end{matrix}\right.\)
Xét \(x\left|x\right|+4\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x^2+4\ge0\left(luôn-đúng\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-x^2+4\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\\left\{{}\begin{matrix}x< 0\\-2\le x\le2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\-2\le x< 0\end{matrix}\right.\)
\(\Leftrightarrow x\ge-2\)
Kết hợp \(x\ne0\Rightarrow\left[{}\begin{matrix}-2\le x< 0\\x>0\end{matrix}\right.\)
tìm tập xác định của hàm số
y=\(\dfrac{\sqrt{x-2}}{x+1}\)