Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Lê Vũ Hoài
Xem chi tiết
Min Kiu
1 tháng 2 2017 lúc 19:55

bn ơi thi vio vòng mấy đấy để mk tra cho

Anh Lê Vũ Hoài
6 tháng 8 2017 lúc 21:24

mình ko nhớ

mà thôi, ko cần nữa đâu

Minz Ank
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 1 2021 lúc 16:08

1.

\(2\left|x\right|+3\left|y\right|=13\Rightarrow\left|x\right|=\dfrac{13-3\left|y\right|}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\left|y\right|\le\dfrac{13}{3}\\\left|y\right|\text{ là số lẻ}\end{matrix}\right.\)  \(\Rightarrow\left|y\right|=\left\{1;3\right\}\)

- Với \(\left|y\right|=1\Rightarrow\left|x\right|=5\Rightarrow\) có 4 cặp

- Với \(\left|y\right|=3\Rightarrow\left|x\right|=2\) có 4 cặp

Tổng cộng có 8 cặp số nguyên thỏa mãn

2.

\(x\left(y+3\right)=7y+21+1\)

\(\Leftrightarrow x\left(y+3\right)-7\left(y+3\right)=1\)

\(\Leftrightarrow\left(x-7\right)\left(y+3\right)=1\)

\(\Rightarrow\left(x;y\right)=\left(6;-4\right);\left(8;-2\right)\) có 2 cặp

Tiến Nguyễn Minh
Xem chi tiết
✰๖ۣۜŠɦαɗøω✰
27 tháng 3 2020 lúc 8:31

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

Khách vãng lai đã xóa
Phùng Gia Bảo
27 tháng 3 2020 lúc 9:14

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

Khách vãng lai đã xóa
Lê Nhật Khôi
27 tháng 3 2020 lúc 10:53

Bài 4:

Ta đặt: \(S=6^m+2^n+2\)

TH1: n chẵn thì:

\(S=6^m+2^n+2=6^m+2\left(2^{n-1}+1\right)\)

Mà \(2^{n-1}+1⋮3\Rightarrow2\left(2^{n-1}+1\right)⋮6\Rightarrow S⋮6\)

Đồng thời S là scp

Cho nên: \(S=6^m+2\left(2^{n-1}\right)=\left(6k\right)^2\)

\(\Leftrightarrow6^m+6\left(2^{n-2}-2^{n-3}+...+2-1\right)=36k^2\)

Đặt: \(A\left(n\right)=2^{n-2}-2^{n-3}+...+2-1=2^{n-3}+...+1\)là số lẻ

Tiếp tục tương đương: \(6^{m-1}+A\left(n\right)=6k^2\)

Vì A(n) lẻ và 6k^2 là chẵn nên: \(6^{m-1}\)lẻ\(\Rightarrow m=1\)

Thế vào ban đầu: \(S=8+2^n=36k^2\)

Vì n=2x(do n chẵn) nên tiếp tục tương đương: \(8+\left(2^x\right)^2=36k^2\)

\(\Leftrightarrow8=\left(6k-2^x\right)\left(6k+2^x\right)\)

\(\Leftrightarrow2=\left(3k-2^{x-1}\right)\left(3k+2^{x-1}\right)\)

Vì \(3k+2^{x-1}>3k-2^{x-1}>0\)(lớn hơn 0 vì 2>0 và \(3k+2^{x-1}>0\))

Nên: \(\hept{\begin{cases}3k+2^{x-1}=2\\3k-2^{x-1}=1\end{cases}}\Leftrightarrow6k=3\Rightarrow k\notin Z\)(loại)

TH2: n là số lẻ

\(S=6^m+2^n+2=\left(2k\right)^2\)(do S chia hết cho 2 và S là scp)

\(\Leftrightarrow3\cdot6^{m-1}+2^{n-1}+1=2k^2\)là số chẵn

\(\Rightarrow3\cdot6^{m-1}+2^{n-1}\)là số lẻ

Chia tiếp thành 2TH nhỏ: 

TH2/1: \(3\cdot6^{m-1}\)lẻ và \(2^{n-1}\)chẵn với n là số lẻ

Ta thu đc: m=1 và thế vào ban đầu

\(S=2^n+8=\left(2k\right)^2\)(n lớn hơn hoặc bằng 3)

\(\Leftrightarrow2^{n-2}+2=k^2\)

Vì \(k^2⋮2\Rightarrow k⋮2\Rightarrow k^2=\left(2t\right)^2\)

Tiếp tục tương đương: \(2^{n-2}+2=4t^2\)

\(\Leftrightarrow2^{n-3}+1=2t^2\)

\(\Leftrightarrow2^{n-3}\)là số lẻ nên n=3

Vậy ta nhận đc: \(\left(m;n\right)=\left(1;3\right)\)

TH2/2: \(3\cdot6^{m-1}\)là số chẵn và \(2^{n-1}\)là số lẻ

Suy ra: n=1

Thế vào trên: \(6^m+4=4k^2\)

\(\Leftrightarrow6^m=\left(2k-2\right)\left(2k+2\right)\)

\(\Leftrightarrow\hept{\begin{cases}2k-2=6^q\\2k+2=6^p\end{cases}}\Rightarrow p+q=m\)

Và \(6^p-6^q=4\)

\(\Leftrightarrow6^q\left(6^{p-q}-1\right)=4\Leftrightarrow6^q\le4\Rightarrow q=1\)(do là tích 2 stn)

\(\Rightarrow k\notin Z\)

Vậy \(\left(m;n\right)=\left(1;3\right)\)

P/S: mk không kiểm lại nên có thể sai

Khách vãng lai đã xóa
luong ngoc anh
Xem chi tiết
ngonhuminh
5 tháng 1 2017 lúc 18:40

sai quá nhiều rồi sai thêm câu nữa xem nào?

y phải lẻ:

y=+-1=> x=+-5

y=+-3=>x=+-2

y=+-5 hết

Vinne
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 8 2021 lúc 11:07

\(x^2+x+13=y^2\\ \Leftrightarrow x^2-y^2+x+13=0\\ \Leftrightarrow4x^2-4y^2+4x+52=0\\ \Leftrightarrow\left(2x+1\right)^2-4y^2=51\\ \Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=51=51\cdot1=17\cdot3\left(x,y>0\right)\)

Tới đây giải ra các trường hợp thui

 

Lê Bảo Nguyên
Xem chi tiết
Nguyễn Đăng Nhân
22 tháng 1 2022 lúc 10:12

\(x\left(2y+3\right)=y+1\)

\(x\left(2y+2\right)=y\)

\(\Rightarrow x\left(y+2\right)\)

\(\Rightarrow72\)

Suy ra, biểu thức có 72 cặp số thỏa mãn

Khách vãng lai đã xóa
Lục Tiểu Ly
Xem chi tiết

Giải:

x/2-2/y=1/2

     -2/y=1/2-x/2

     -2/y=1-x/2

=>y.(1-x)=-2.2

    y.(1-x)= -4

=>y và 1-x thuộc Ư(-4)=(1;-1;2;-2;4;-4)

Ta có bảng tương ứng:

1-x =1 thì x=0;y=-4

1-x=-1 (loại)

1-x=2 thì x=-1;y=2

1-x=-2 thì x=3;y=-2

1-x=4 thì x=-3;y=1

1-x=-4 thì x=5;y=-1

Vậy (x;y)=(0;4);(-1;2);(3;-2);(-3;1);(5;-1)

Chúc bạn học tốt!

cuhuydat
Xem chi tiết
Mai Thế Quân
Xem chi tiết
Tài khoản đã bị khóa
13 tháng 3 2024 lúc 15:22

 

Đặt �=�+1,�=�+2,�=�+3, bài toán trở thành:

���=4(�−1)(�−2)(�−3)