Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoang Tran
Xem chi tiết
Akai Haruma
12 tháng 8 2021 lúc 1:15

Sao lúc thì $x,y,z$ lúc thì $a,b$ vậy bạn? Bạn coi lại đề.

Hoang Tran
Xem chi tiết
Hoang Tran
Xem chi tiết
Akai Haruma
10 tháng 8 2021 lúc 16:09

Lời giải:

$P=a^3b^3+1+1+\frac{1}{a^3b^3}$

$=(ab)^3+\frac{1}{(ab)^3}+2$

Áp dụng BĐT Cô-si:

$(ab)^3+\frac{1}{4096(ab)^3}\geq 2\sqrt{(ab)^3.\frac{1}{4096(ab)^3}}=\frac{1}{32}(1)$

$ab\leq \frac{(a+b)^2}{4}=\frac{1}{4}$

$\Rightarrow (ab)^3\leq \frac{1}{64}$

$\Rightarrow \frac{4095}{4096(ab)^3}\geq \frac{4095}{64}(2)$

Từ $(1);(2)$ suy ra:
$P\geq \frac{1}{32}+\frac{4095}{64}+2=\frac{4225}{64}$
Vậy $P_{\min}=\frac{4225}{64}$

Giá trị này đạt tại $a=b=\frac{1}{2}$

 

Văn Hoang Tran
Xem chi tiết
L N T 39
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2021 lúc 18:21

Đặt \(\left(a+1;b+1;c+1\right)=\left(x;y;z\right)\Rightarrow1\le x\le y\le z\le2\)

\(B=\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}+3\) (1)

Do \(x\le y\le z\Rightarrow\left(z-y\right)\left(y-x\right)\ge0\)

\(\Leftrightarrow xy+yz\ge y^2+zx\)

\(\Leftrightarrow\dfrac{x}{z}+1\ge\dfrac{y}{z}+\dfrac{x}{y}\)

Tương tự: \(1+\dfrac{z}{x}\ge\dfrac{y}{x}+\dfrac{z}{y}\)

Cộng vế: \(2+\dfrac{x}{z}+\dfrac{z}{x}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{y}{x}\) (2)

Từ (1); (2) \(\Rightarrow B\le2\left(\dfrac{x}{z}+\dfrac{z}{x}\right)+5\)

Đặt \(\dfrac{z}{x}=t\Rightarrow1\le t\le2\)

\(\Rightarrow B\le2\left(t+\dfrac{1}{t}\right)+5=\dfrac{2t^2+2}{t}+5=\dfrac{2t^2+2}{t}-5+10\)

\(\Rightarrow B\le\dfrac{2t^2-5t+2}{t}+10=\dfrac{\left(t-2\right)\left(2t-1\right)}{t}+10\le10\)

\(B_{max}=10\) khi \(t=2\) hay \(\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;1\right)\)

dia fic
Xem chi tiết
Trần Minh Hoàng
1 tháng 1 2021 lúc 18:33

Ta có: \(2\left(b^2+bc+c^2\right)=2b^2+2c^2+2bc\le2b^2+2c^2+b^2+c^2=3\left(b^2+c^2\right)\Rightarrow b^2+c^2\le3-a^2\Rightarrow a^2+b^2+c^2\le3\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\).

Áp dụng bđt Schwars ta có:

\(T\ge a+b+c+\dfrac{18}{a+b+c}=\left(a+b+c+\dfrac{9}{a+b+c}\right)+\dfrac{9}{a+b+c}\ge2\sqrt{9}+\dfrac{9}{3}=9\).

Đẳng thức xảy ra khi a = b = c = 1.

Bách Bách
Xem chi tiết
Bách Bách
11 tháng 6 2021 lúc 12:06

Cho \(a+b+c=1\) nhé các bạn.

Trần Minh Hoàng
11 tháng 6 2021 lúc 17:46

Đặt ab + bc + ca = q; abc = r. Ta có:

\(A=\dfrac{\left(ab+bc+ca\right)+6\left(a+b+c\right)+27}{abc+3\left(ab+bc+ca\right)+9\left(a+b+c\right)+27}-\dfrac{1}{3\left(ab+bc+ca\right)}\)

\(A=\dfrac{q+33}{r+3q+36}-\dfrac{1}{3q}\).

Theo bất đẳng thức Schur: \(a^3+b^3+c^3+3abc\ge a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)

\(\Leftrightarrow\left(a+b+c\right)^3+9abc\ge4\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow9r\ge4q-1\Leftrightarrow r\ge\dfrac{4q-1}{9}\).

Từ đó \(A\le\dfrac{q+33}{\dfrac{4q-1}{9}+3q+36}-\dfrac{1}{3q}\)

\(\Rightarrow A\leq \frac{27q^2+860q-323}{93q^2+969q}\)

\(\Rightarrow A+\dfrac{1}{10}=\dfrac{\left(3q-1\right)\left(121q+3230\right)}{30q\left(31q+323\right)}\le0\). (Do \(q=ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\))

\(\Rightarrow A\leq \frac{-1}{10}\). Dấu "=" xảy ra khi và chỉ khi a = b = c = 1.

 

 

trương phạm đăng khôi
Xem chi tiết
trương phạm đăng khôi
16 tháng 10 2021 lúc 13:58

help me!

Hoang Tran
Xem chi tiết
Akai Haruma
11 tháng 8 2021 lúc 10:56

Lời giải:
\(A=\frac{x^2}{\sqrt{x^4+8xy^3}}+\frac{2y^2}{\sqrt{y^4+y(x+y)^3}}\)

Xét:

\(x^4+8xy^3-(x^2+2y^2)^2=8xy^3-4y^4-4x^2y^2\)

\(=-4y^2(x^2-2xy+y^2)=-4y^2(x-y)^2\leq 0\)

\(\Rightarrow x^4+8xy^3\leq (x^2+2y^2)^2\)

\(\Rightarrow \frac{x^2}{\sqrt{x^4+8xy^3}}\geq \frac{x^2}{x^2+2y^2}(*)\)

Mặt khác:
\(y^4+y(x+y)^3-(x^2+2y^2)^2=x^3y+3xy^3-2y^4-x^4-x^2y^2\)

\(=x^3(y-x)+3y^3(x-y)+y^4-x^2y^2\)

\(=x^3(y-x)+3y^3(x-y)+y^2(y-x)(y+x)\)

\(=(y-x)(x^3-2y^3+xy^2)\)

\(=(y-x)[(x-y)(x^2+xy+y^2)+y^2(x-y)]\)

\(=-(x-y)^2(x^2+xy+2y^2)\leq 0\)

\(\Rightarrow y^4+y(x+y)^3\leq (x^2+2y^2)^2\Rightarrow \frac{2y^2}{\sqrt{y^4+y(x+y)^3}}\geq \frac{2y^2}{x^2+2y^2}(**)\)

Từ $(*); (**)\Rightarrow A\geq 1$