\(\sin^2B+\sin^2C=2\sin^2A\)
Từ hệ thức , cm góc A = 60độ
cho tam giác ABC tìm giá trị lớn nhất của biểu thức:
(sin^2A+sin^2B+sin^2C)/(cos^2A+cos^2B+cos^2C)
cho tam giác abc có 3 góc nhọn. Vẽ đường cáo AD, BE, CF cắt nhau tại H. Chứng minh:
a) \(0< cos^2A+cos^2B+cos^2C< 1\)
b)\(2< sin^2A+sin^2B+sin^2C< 3\)
c)sinA + sinB + sinC < 2( cosA + cosB + cosC)
d)sinB . cosC + sinC . cosB = sinA
e)tanA + tanB + tanC = tanA . tanB . tanC
Cho tam giác nhọn ABC CM : \(\sin^2A+\sin^2B+\sin^2C>2\)
Cho tam giác ABC có ba góc đèu nhọn , các đường BD và CE cắt nhau tại H . Gọi M,N,K lần lượt là trung điểm của AH,ED,BC:
a) CM : M,N,K thẳng hàng
b) Tính số đo góc MDN
c) AH cắt BC tại F . Kí hiệu S là diện tích . CM : \(\frac{S\Delta AED}{S\Delta ABC}=cos^2A\), \(\frac{SBDEC}{S\Delta ABC}=sin^2A\),\(\frac{S\Delta EDF}{S\Delta ABC}=1-cos^2A-cos^2B-cos^2C\)
d)CM : \(cos^2A+cos^2B+cos^2C< 1\), \(2< sin^2A+sin^2B+sin^2C< 3\)
ai tích mình mình tích lại cho
Cho tam giác ABC có 3 góc nhọn, 3 đường cao BD,CE,AF cắt nhau tại H. Chứng minh:2<sin^2A+sin^2B+sin^2C<3
Cho tam giác ABC nhọn .Tìm min của :
\(T=\sqrt{sin^2A+\dfrac{1}{cos^2B}}+\sqrt{sin^2B+\dfrac{1}{cos^2C}}+\sqrt{sin^2C+\dfrac{1}{cos^2A}}\)
VỚI tam giác ABC bất kì , tìm giá trị lớn nhất của
M = \(\dfrac{\sin^2A+\sin^2B+\sin^2C}{\cos^2A+\cos^2B+\cos^2C}\)
Cho tam giác ABC là tam giác nhọn, CMR: Sin^2A+Sin^2B+Sin^2C > 2?
Kẻ đường cao AD, BE và CF.
\(\Delta AEF~\Delta ABC\left(c.g.c\right)\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=\cos^2A\)
\(\Delta BFD~\Delta BCA\left(c.g.c\right)\Rightarrow\dfrac{S_{BFD}}{S_{BCA}}=\left(\dfrac{BF}{BC}\right)^2=\cos^2B\)
\(\Delta CDE~\Delta CAB\left(c.g.c\right)\Rightarrow\dfrac{S_{CDE}}{S_{CAB}}=\left(\dfrac{CE}{CB}\right)^2=\cos^2C\)
\(\sin^2A+\sin^2B+\sin^2C=3-\left(\cos^2A+\cos^2B+\cos^2C\right)\)
\(=3-\left(\dfrac{S_{AEF}}{S_{ABC}}+\dfrac{S_{BFD}}{S_{BCA}}+\dfrac{S_{CDE}}{S_{CAB}}\right)>3-\dfrac{S_{ABC}}{S_{ABC}}=2\left(\text{đ}pcm\right)\)
Ta có:
\(A + B + C = π \Rightarrow C = π - (A + B) \Rightarrow cosC = cos[π - (A + B)] = - cos(A + B)
\)
\(P = Sin^2A+Sin^2B+Sin^2C = \dfrac{1 - cos2A}2 + \dfrac{1 - cos2B}2 + 1 - cos^2C\)
\(= 2 - \dfrac{cos2A + cosB}2 - cos^2(A+B)\)
\(= 2 - cos(A+B).cos(A-B) - cos^2(A+B)\)
\(= 2 - cos(A+B)[cos(A-B) + cos(A+B)]\)
\(= 2 - cos(A+B).2cosA.cosB\)
\(= 2 + 2.cosC.cosA.cosB
\)
\(A ,B , C\) là các góc nhọn \(\Rightarrow\) \(cosC.cosA.cosB > 0\)
\(\Rightarrow\) \(P = Sin^2A+Sin^2B+Sin^2C > 2\)
1. cos 2a + cos 2b = - 2 cos(a+b) cos( a-b)
2. cos2a + sin2b = 1
3. cos a2 + sin b2= 1
4. cos2 a + sin2 a = 1
5. cos 2a = cos2 a - 2 sin 2a
6. sin 2a = - 2 sin a. cos a.
7. sin 2a = cos2 a - sin2 a
8. sin 2a - sin 2b= 2 sin ( a+b) cos ( a - b)
9. sin 2a - sin 2b= 2 cos( a+b) sin ( a - b)
10. cos a2 + sin a2 = 1
Câu số mấy đúng?