Chứng minh rằng:
a) \(sin\left(a+b\right).sin\left(a-b\right)=sin^2a-sin^2b=cos^2b-cos^2a\)
b) \(4sin\left(x+\dfrac{\Pi}{3}\right).sin\left(x-\dfrac{\Pi}{3}\right)=4sin^2x-3\)
c) \(sin\left(x+\dfrac{\Pi}{4}\right)-sin\left(x-\dfrac{\Pi}{4}\right)=\sqrt{2}cosx\)
d) \(\dfrac{1}{sin10^0}-\dfrac{\sqrt{3}}{cos10^0}=4\)
Cho DABC thỏa điều kiện : \(sin^2A+sin^2B+cos^2C+\frac{1}{4}=2sinA.sinB+cosC.\) Chứng minh rằng DABC đều.
Chứng minh rằng:
a) \(\left(\dfrac{tga+cosa}{1+cotga.cosa}\right)^n=\dfrac{tg^na+cos^na}{1+cotg^na.cos^na},\forall n\in Z^+\)
b) \(tga.tgb=\dfrac{tga+tgb}{cotga+cotgb}\)
c) \(\dfrac{tg^2a-tg^2b}{tg^2a.tg^2b}=\dfrac{sin^2a-sin^2b}{sin^2a.sin^2b}\)
g) \(\dfrac{1}{4}\left(\sqrt{\dfrac{1+sina}{1-sina}}-\sqrt{\dfrac{1-sina}{1+sina}}\right)^2=tg^2a\)
Rút gọn các biểu thức sau:
a, \(A=\sin^2\left(a-b\right)+\sin^2b+2\sin\left(a-b\right).\sin b.\cos a\)
b, \(B=\cos^2a+\cos^2\left(a+b\right)-2\cos a.\cos b.\cos\left(a+b\right)\)
Mọi người giúp mình với ạ!!!
Chứng minh rằng với mọi tam giác ABC ta có:
a) \(SinA+SinB+SinC\le Cos\dfrac{A}{2}+Cos\dfrac{B}{2}+Cos\dfrac{C}{2}\)
b) \(CosA.CosB.CosC\le Sin\dfrac{A}{2}.Sin\dfrac{B}{2}.Sin\dfrac{C}{2}\)
Cm biểu thức ko phụ thuộc x
\(A=\dfrac{cot^2a-cos^2a}{cot^2a}+\dfrac{sinacosa}{cota}\)
A= sin8x+\(2cos^2x\left(4x+\dfrac{\pi}{4}\right)\)
Cm đẳng thức
\(\dfrac{sin2a-2sina}{sin2a+2sina}+tan^2\dfrac{a}{2}=0\)
\(\dfrac{sina}{1+cosa}+\dfrac{1+cosa}{sina}=\dfrac{2}{sina}\)
\(\dfrac{sin^2x}{sinx-cosx}-\dfrac{sinx+cosx}{tan^2x-1}=sinx+cosx\)
\(\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{1-tan^2a.cot^2b}=-cos^2a.sin^2b\)
\(CMR:\frac{2+\sin^2a\cos^2a}{1+\cos^2a}=1+\sin^2a\)
Chứng minh: \(\dfrac{sin^2a-tan^2a}{cos^2a-cot^2a}\) = tan6a
Biết \(\tan x=\frac{2b}{a-c}\) giá trị của biểu thức A=\(a\cos^2x+2b\sin x\cdot\cos x+c\sin^2x\) bằng ?