tìm x \(\in\) Z , biết
a. 4x - 2 \(⋮\)x - 1
b. ( x2 - x + 2) \(⋮\)x - 1
Cho biểu thức B =(\(\dfrac{x^3}{x^3-4x}+\dfrac{6}{^{6-3x}}+\dfrac{1}{2+x}\)): (x+2+\(\dfrac{10-x^2}{x-2}\))
a) Rút gọn B
b) Tìm B biết x2-5x+6=0
c) Tìm x ∈ Z để B ∈ Z
d) Tìm x biết |B|>1
Cho biểu thức:
A=x/2- (1/x-4x-2/1-2x) :(1+4x-x2 +1/x2 -2x)
a,rút gọn A
b,tìm x∈ Z để A∈Z
Tìm x, biết:
a) ( x 2 - 4x + 16)(x + 4) - x(x + l)(x + 2) + 3 x 2 = 0;
b) (8x + 2)(1 - 3x) + (6x - l)(4x -10) = -50.
a) Thực hiện rút gọn VT = -2x – 64
Giải phương trình -2x – 64 = 0 thu được x = -32.
b) Thực hiện rút gọn VT = -62 x +12
Giải phương trình -62x + 12 = -50 thu được x = 1.
Cho: E={x\(\in\)Z| |x|≤5}, A={x\(\in\)R|x2+3x-4=0}, B={x\(\in\)Z|(x-2)(x+1)(2x2-x-3)=0}
Tìm CE(A\(\cap\)B), CE(A\(\cup\)B)
Lời giải:
$E=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}$
$A=\left\{1; -4\right\}$
$B=\left\{-1; 2\right\}$
Do đó:
$A\cup B = \left\{-4; -1; 1;2\right\}$
$C_E(A\cup B)=\left\{-5;-3;-2; 0;3;4;5\right\}$
$A\cap B = \varnothing$
$C_E(A\cap B)=E$
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
Tính giá trị biểu thức:
a) A = ( x 2 + 4x + 4): (x + 2) tại x = 1998;
b) B = (8 x 3 - 12 x 2 + 6x -1): ( 1 - 2 x ) 2 tại x = 501;
c) C = - 3 8 ( x + 3 ) 3 : - 8 9 3 + x tại x = -2;
d) D = ( - x - y + z ) 3 : ( - y + z - x ) - 2 tại x = y = 3 và z = 1
A=\(\left(\frac{x^3}{x^{3^{ }}-4x}+\frac{6}{6-3x}+\frac{1}{2+x}\right):\left(x+2+\frac{10-x^2}{x-2}\right)\)
a. Rút gọn A
b. Tìm x\(\in\)Z để A\(\in\)Z
c. Tìm x biết \(|B|\)>1
1. Tìm \(m\in\left[-10;10\right]\) để pt \(\left(x^2-2x+m\right)^2-2x^2+3x-m=0\) có 4 ng pb
2. Cho biết x1,x2 là nghiệm của pt \(x^2-x+a=0\) và x3,x4 là nghiệm của pt \(x^2-4x+b=0\) . Biết rằng \(\dfrac{x2}{x1}=\dfrac{x3}{x2}=\dfrac{x4}{x3}\), b >0 . Tìm a
1.
Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)
Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):
\(-x^2+x+1=-x^2+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)
Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\):
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)
Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)
a) rút gọn biểu thức sau :(x+2)(x-2)-(x-3)(x+1)
b)Tìm x biết : x2-4x+3=0
a)=\(x^2-4-x^2+2x+3=2x-1\)
b)\(x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Tìm x biết:
a) x 6 + 2 x 3 +1 = 0; b) x(x - 5) = 4x - 20;
c) x 4 -2 x 2 =8-4 x 2 ; d) ( x 3 - x 2 ) - 4 x 2 + 8x-4 = 0.
a) x = -1. b) x = 4 hoặc x = 5.
c) x = ± 2 . d) x = 1 hoặc x = 2.