Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vô danh
Xem chi tiết
Trần Tuấn Hoàng
4 tháng 4 2022 lúc 20:29

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Trần Tuấn Hoàng
4 tháng 4 2022 lúc 20:42

c. Bạn kiểm tra lại đề nhé.

b. \(5x\left(2-x\right)=-5x\left(x-2\right)=-5\left(x^2-2x\right)=-5\left(x^2-2x+1-1\right)=-5\left(x-1\right)^2+5\le5\)-Dấu bằng xảy ra \(\Leftrightarrow x=1\)

Nguyễn Việt Lâm
5 tháng 4 2022 lúc 22:58

a.

\(\left(80-2x\right)\left(50-2x\right)x=\dfrac{2}{3}\left(40-x\right)\left(50-2x\right)3x\le\dfrac{2}{3}\left(\dfrac{40-x+50-2x+3x}{3}\right)^3=18000\)

Dấu "=" xảy ra khi \(40-x=50-2x=3x\Leftrightarrow x=10\)

b.

\(5x\left(2-x\right)=5.x\left(2-x\right)\le\dfrac{5}{4}\left(x+2-x\right)^2=5\)

Dấu "=" xảy ra khi \(x=2-x\Rightarrow x=1\)

c.

Biểu thức này chỉ có min, ko có max

d.

\(x+y\le1\Rightarrow-\left(x+y\right)\ge-1\)

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}=\left(4x+\dfrac{1}{x}\right)+\left(4y+\dfrac{1}{y}\right)-3\left(x+y\right)\ge2\sqrt{\dfrac{4x}{x}}+2\sqrt{\dfrac{4y}{y}}-3.1=5\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Hùng Hoàng
Xem chi tiết
HT.Phong (9A5)
25 tháng 10 2023 lúc 18:38

A) \(A=-3x^2+x+1\)

\(A=-3\left(x^2-\dfrac{1}{3}x-\dfrac{1}{3}\right)\)

\(A=-3\left(x^2-2\cdot\dfrac{1}{6}\cdot x+\dfrac{1}{36}-\dfrac{13}{36}\right)\)

\(A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\)

Mà: \(-3\left(x-\dfrac{1}{6}\right)^2\le0\forall x\)

\(\Rightarrow A=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{13}{12}\le\dfrac{13}{12}\forall x\)

Dấu "=" xảy ra khi:

\(x-\dfrac{1}{6}=0\Rightarrow x=\dfrac{1}{6}\)

Vậy: \(A_{max}=\dfrac{13}{12}.khi.x=\dfrac{1}{6}\)

B) \(B=2x^2-8x+1\)

\(B=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(B=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(B=2\left(x-2\right)^2-7\)

Mà: \(2\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow B=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu "=" xảy ra khi:

\(x-2=0\Rightarrow x=2\)

Vậy: \(B_{min}=2.khi.x=2\)

Hùng Hoàng
25 tháng 10 2023 lúc 18:45

câu a) bạn viết sai đề rồi

 

Kim Ánh
Xem chi tiết
pham trung thanh
8 tháng 2 2018 lúc 21:37

\(x^2+2x+3\)

\(=\left(x^2+2x+1\right)+2\)

\(=\left(x+1\right)^2+2\)

Do \(\left(x+1\right)^2\ge0\) với mọi x

\(\Rightarrow x^2+2x+3\ge2\)

Dấu = khi x=-1

Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 2 2021 lúc 15:41

\(A=\dfrac{2x^2}{x^4+x^2+1}=\dfrac{6x^2}{3\left(x^4+x^2+1\right)}=\dfrac{2\left(x^4+x^2+1\right)-2x^4+4x^2-2}{3\left(x^4+x^2+1\right)}\)

\(A=\dfrac{2}{3}-\dfrac{2\left(x^2-1\right)^2}{3\left(x^4+x^2+1\right)}\le\dfrac{2}{3}\)

\(A_{max}=\dfrac{2}{3}\) khi \(x^2=1\)

Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 10 2021 lúc 7:57

Áp dụng BĐT cosi:

\(A=\sqrt{\left(2x+1\right)\left(x+2\right)}+2\sqrt{x+3}-2x\\ A\le\dfrac{2x+1+x+2}{2}+\dfrac{4+x+3}{2}-2x\\ A\le\dfrac{3x+3}{2}+\dfrac{x+7}{2}-2x=\dfrac{3x+3+x+7-4x}{2}=5\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2x+1=x+2\\4=x+3\end{matrix}\right.\Leftrightarrow x=1\)

CCDT
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2021 lúc 21:29

\(P=\sqrt{\left(x+2\right)\left(2x+1\right)}+2\sqrt{x+3}-2x\)

\(P\le\dfrac{1}{2}\left(x+2+2x+1\right)+\dfrac{1}{2}\left(4+x+3\right)-2x=5\)

\(P_{max}=5\) khi \(x=1\)

Ngô Thảo Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 2 2023 lúc 22:33

x^2+2x+6

=x^2+2x+1+5

=(x+1)^2+5>=5

=>P<=1/5

Dấu = xảy ra khi x=-1

huong nguyen
Xem chi tiết
Lê Quý Nhân
Xem chi tiết
Nguyễn Trần Mai Anh
Xem chi tiết
nguyen thi thu hoai
25 tháng 9 2018 lúc 18:02

Có ( 2x - 1 )\(^2\) \(\ge\) 0 với mọi x

     ( x + 2 )\(^2\) \(\ge\) 0 với mọi x

\(\Rightarrow\) ( 2x - 1 )\(^2\) + ( x + 2 )\(^2\) \(\ge\) 0 với mọi x

Dấu bằng xảy ra \(\Leftrightarrow\) ( 2x - 1 )\(^2\) = 0

                                 và ( x+ 2 ) \(^2\) = 0

............................. Bạn tự làm phần còn lại nhé .

Đề bài tìm GTNN .

Điệp viên 007
25 tháng 9 2018 lúc 18:02

Ta có:

\(\left(2x-1\right)^2+\left(x+2\right)^2\)

\(=4x^2-4x+1+x^2+4x+4\)

\(=5x^2+5\)

Mk làm đc đến đây thôi

Có lẽ đề bài sai rồi, phải là tìm giá trị nhỏ nhất chứ

Trần Thanh Phương
25 tháng 9 2018 lúc 18:33

Đặt biểu thức trên là A

Vì \(\left(2x-1\right)^2\)và \(\left(x+2\right)^2\)\(\ge0\forall x\)

\(\Rightarrow A\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-1=0\\x+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\x=-2\end{cases}}\)

Vậy Amin = 0 <=> x = 1/2 và -2