Cho S + 1 + 2 + 22 + 23 + ........... + 22017
a. Thu gọn S
So sánh S và 5 . 22016
Tìm dư của phép chia số A = 22021 + 22022 chia cho B = 1 + 2 + 22 + 23 +....+22016 + 22017
Bài Toàn 16 : Tính tổng
a) S = 1 + 2 + 22 + 23 + … + 22017
b) S = 3 + 32 + 33 + ….+ 32017
c) S = 4 + 42 + 43 + … + 42017
d) S = 5 + 52 + 53 + … + 52017
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
Cho hình tam giác ABC,trên BC lấy điểm m,điểm n sao cho BM=MN=NC.Nối A với M và A với N .
a,so sánh S tam giác ABM,AMN,ANC .
b, so sánh S abn và S abc
ai nhanh nhất mk sẽ tk bạn đó
S abm=Samn=Sanc
Sabn=2/3 Sabc
bài này dài lắm đó , làm lại rồi ....... thế nào cũng đc nha Trần Anh Đức !!!!Q
Cho a,b thuộc Z , b > 0. So sánh hai số hữu tỉ a/b và a+2001/b+2001
Câu hỏi của Tran Mai Ngoc - Toán lớp 7 - Học toán với OnlineMath
Quy đồng mẫu số:
\(\dfrac{a}{b}=\dfrac{a\left(b+2001\right)}{b\left(b+2001\right)}=\dfrac{ab+2001a}{b\left(b+2001\right)}\)\(\dfrac{a+2001}{b+2001}=\dfrac{\left(a+2001\right)b}{\left(b+2001\right)b}=\dfrac{ab+2001b}{b\left(b+2001\right)}\)Vì b > 0 nên mẫu số của 2 phân số trên dương. Chỉ cần so sánh tử số. So sánh ab + 2001a với ab + 2001b
Nếu a < b => tử số của phân số thứ nhất bé hơn tử số của phân số thứ 2
=> \(\dfrac{a}{b}< \dfrac{a+2001}{b+2001}\)
Nếu a = b => 2 phân số bằng nhau đều bằng 1
Nếu a > b => tử số của phân số thứ nhất lớn hơn tử số phân số thứ 2
=> \(\dfrac{a}{b}>\dfrac{a+2001}{a+2001}\)
Chúc bạn học giỏi nha!!!!
S=1+2+22+23+...+29. So sánh S với 5. 28
\(S=1+2+2^2+...+2^9\)
\(S=\dfrac{2^{9+1}-1}{2-1}\)
\(S=2^{10}-1=1023\)
\(5.2^8=5.256=1280>1023\)
\(\Rightarrow S< 5.2^8\)
cho hình thang vuông abcd vuông góc tại a và d , ab = 1/3 cd . kéo dài da và cb cắt nhau tại m . so sánh diện tích abc vàadc
so sánh Sabm và S acm . Sabcd = 64cm vuong tính Smba
Tính giá trị biểu thức (Thu gọn các tổng sau):
A = 2 + 22 + 23 + … + 22017
Ta có:
A = 2 + 22 + 23 + … + 22017
2A = 2.( 2 + 22 + 23 + … + 22017)
2A = 22 + 23 + 24 + … + 22018
2A – A = (22 + 23 + 24 + … + 22018) – (2 + 22 + 23 + … + 22017)
Vậy A = 22018 – 2
Tính giá trị biểu thức (Thu gọn các tổng sau):
A = 2 + 22 + 23 + … + 22017
Ta có: A = 2 + 22 + 23 + … + 22017
2A = 2.( 2 + 22 + 23 + … + 22017)
2A = 22 + 23 + 24 + … + 22018
2A – A = (22 + 23 + 24 + … + 22018) – (2 + 22 + 23 + … + 22017)
A = 22018 – 2
Vậy A = 22018 – 2
Có : \(S=1+2+2^2+2^3+....+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)
\(\Rightarrow S=2^{100}-1< 2^{100}\)
Vậy \(S< 2^{100}\)
S=1+2+22+23+....+299
⇒2S=2+22+23+....+2100
⇒2S−S=2100-1
S=2100-1
vì 2100 -1<2100
⇒S<2100