chứng minh bất đẳng thức 1/x+1/y >= 4/(x+y)
Cho x, y, z là các số thực không âm thỏa mãn x + y + z = 3. Chứng minh bất đẳng thức: (1 - x)^3 + (1 - y)^3 + (1 - z)^3 ≤ 3/4
có: \(x\left(2x-3\right)^2\ge0\Leftrightarrow4x^3-12x^2+9x\ge0\Leftrightarrow4x^3-12x^2+12x-4\ge3x-4\)
\(\Leftrightarrow4\left(x-1\right)^3\ge3x-4\)
\(\Leftrightarrow\left(1-x\right)^3\le1-\frac{3}{4}x\).
tương tự và cộng lại ta có ngay đpcm.
Dấu = xảy ra khi 2 số bằng 1,5; 1 số bằng 0
Chứng minh đẳng thức, bất đẳng thức: \(x^4+y^4+\left(x+y\right)^4=2.\left(x^2+xy+y^2\right)^2\)
Lời giải:
Ta có:
$x^4+y^4+(x+y)^4=(x^4+y^4+2x^2y^2)-2x^2y^2+[(x+y)^2]^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+2xy+y^2)^2$
$=(x^2+y^2)^2-2x^2y^2+(x^2+y^2)^2+(2xy)^2+4xy(x^2+y^2)$
$=2(x^2+y^2)^2+2x^2y^2+4xy(x^2+y^2)$
$=2[(x^2+y^2)^2+2xy(x^2+y^2)+(xy)^2]$
$=2(x^2+y^2+xy)^2$
Ta có đpcm.
chứng minh bất đẳng thức: 1/x +1/y +1/z >= 9/(x+y+z) dấu “=” xảy ra khi x = y = z,
+) Áp dụng BĐT Cô - si cho 4 số dương x; x; y; z ta có:
x+x+y+z≥44√x.x.y.z
=> 2x + y + z ≥44√x.x.y.z (1)
Với 4 số dương 1x ;1x ;1y ;1z ta có: 1x +1x +1y +1z ≥4.4√1x .1x .1y .1z (2)
Từ (1)(2) => (2x+y+z)(1x +1x +1y +1z )≥4.4√x.x.y.z4.4√1x .1x .1y .1z =16
=> 12x+y+z ≤116 .(2x +1y +1z ) (*)
Tương tự, ta có: 1x+2y+z ≤116 .(1x +2y +1z ) (**)
1x+y+2z ≤116 .(1x +1y +2z ) (***)
Từ (*)(**)(***) => Vế trái ≤116 (4x +4y +4z )=14 .(1x +1y +1z )=14 .4=1
=> đpcm
Áp dụng BĐT Cauchy- schwarz:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
(Dấu "="\(\Leftrightarrow x=y=z\))
chứng minh bất đẳng thức
1/(1+x)^2+1/(1+y)^2>1/(1+x*y)
Chứng minh các bất đẳng thức: x^2 + y^2 +1 lớn hơn hoặc bằng xy + x + y
Áp dụng BĐT Cô-si a2+b2>=2ab, ta đc:
x^2+y^2>=2.x.y=2xy
x^2+1>=2.x.1=2x
y^2+1>=2.y.1=2y
Cộng vế theo vế ba BĐT trên, ta đc: x^2+y^2+x^2+1+y^2+1>=2xy+2x+2y
(=) 2(x^2+y^2+1)>=2(xy+x+y)
(=)x^2+y^2+1>=xy+x+y.
Ta có : x^2 + y^2 +1 >= xy +x +y
<=> 2(x^2+y^2 +1) >=2 ( xy+x+y) (*nhân 2 vào cả 2 vế)
<=> 2x^2+2y^2+2 >= 2xy+2x+2y
<=> 2x^2+2y^2+2-2xy-2x-2y >= 0
<=> x^2-2xy+y^2+x^2-2x+1+y^2-2y+1 >=0
<=> (x-y)^2 + ( x-1)^2 +(y-1)^2 >= 0
+ Với x,y thì (x-y)^2 >= 0;(x-1)^2>=0;(y-1)^2>=0 nên ...(ghi lại dòng trên)
Vậy : x^2 +y^2+1 >= xy+x+y
chứng minh bất đẳng thức 1/(x+y+1) +1/(y+z+1)+1/(z+x+1) <1với xyz=1;x; y;z>0
chứng minh bất đẳng thức x^2*(1+y^2)+y^2*(1+z^2)+z^2*(x+x^2)> hoặc bằng 6xyz
x2+y2z2>=2lxl.lyl.lzl nên VT>=6lxl.lyl.lzl>=6xyz
chứng minh bất đẳng thức x^2*(1+y^2)+y^2*(1+z^2)+z^2*(x+x^2)> hoặc bằng 6xyz
Chứng minh bất đẳng thức
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
Điều kiện là \(xy\ne0\)
BĐT tương đương:
\(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-1\right)\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(x^2+y^2-xy\right)\left(x-y\right)^2}{x^2y^2}\ge0\) (luôn đúng)