Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khang1029
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 20:50

\(b,n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)\\ =\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Vì \(n\in Z\) và n lẻ nên \(n=2k+1\left(k\in Z\right)\)

\(\Leftrightarrow\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\\ =2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\\ =16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

Vì \(k,k+1,k-1,k+2\) là 4 số nguyên liên tiếp nên chia hết cho \(1.2.3.4=24\)

Do đó \(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮24.16=384\)

Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 21:03

\(c,\forall n=1\Leftrightarrow10+18-28=0⋮27\\ \text{G/s }n=k\Leftrightarrow\left(10^k+18k-28\right)⋮27\\ \Leftrightarrow10^k+18k-28=27m\left(m\in N\right)\\ \Leftrightarrow10^k=27m-18k+28\\ \forall n=k+1\Leftrightarrow10^{k+1}+18\left(k+1\right)-28\\ =10.10^k+18k-10\\ =10\left(27m-18k+28\right)+18k-10=270m-162k+270⋮27\)

Theo PP quy nạp ta đc đpcm

Khang1029
Xem chi tiết
Khang1029
Xem chi tiết
Kafu Chino
Xem chi tiết
Nguyễn Hải Dương
4 tháng 5 2018 lúc 6:02

Ta có:\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do 5n(n-1)(n+1) có dạng 5k. Do đó chia hết cho 5.

Lại có: n ; n-1 ; n+1 là 3 số tự nhiên liên tiếp nên tích chúng sẽ tồn tại thưa số chia hết cho 3, chia hết cho 2.

Do đó5n(n-1)(n+1) \(⋮30\)

Mặt khác: n(n-1)(n+1)(n-2(n+2) là tích 5 số tự nhiên liên tiêp, do đó tích của chúng có tồn tại 1 thừa số chi hết cho, 5, một thwuaf số chia hết cho 3, một thưa só chia hét cho 2.

Do đó n5-n chia hết cho 30

Nguyễn Hải Dương
4 tháng 5 2018 lúc 6:14

\(A=n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Đặt n = 2k+1 Thay vào A có: \(2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)

=> \(A⋮16\)

Lại có k;k-1;k=1;k=2 là 3 số nguyên liên tiếp do đó tích chung số chia hét cho 2,3,4(3 số nguyên tố cùng nhau). Nên A chia hết 24

=> A\(A⋮384\)

Kafu Chino
Xem chi tiết
Diệu Huyền
29 tháng 8 2019 lúc 11:53

Chứng minh A= 10 ^n + 18n - 1 chia hết cho 27

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Nguyễn Hương Ly
Xem chi tiết
Mạnh Lê
13 tháng 3 2017 lúc 20:18

 C1: 10^n + 18n - 28 = (10^n - 9n -1) + (27n - 27) 
Ta có: 27n - 27 chia hết cho 27 (1) 
10n - 9n - 1 = [( 9...9 + 1) - 9n - 1] = 9...9 - 9n = 9 (1...1 - n) chia hết cho 27 (2)
Vì 9 chia hết cho 9 và 1...1 - n chia hết cho 3. Do 1...1 - n là một số có tổng các chữ số chia hết cho 3 và từ (1) và (2) => ( 10^n+18n-28 ) chia hết cho 27. 
Vậy ( 10^n+18n-28 ) chia hết cho 27.(đpcm) 

C2: *Với n=1, ta có: 10 + 18 - 28 = 0 chia hết cho 27. 
Giả sử n=k, ta có: 10^k + 18k - 28 chia hết cho 27. 
=> 10^k + 18k - 28 = 27m (m là số nguyên) 
=> 10k = 27m -18k + 28 (1) 
*Với n=k+1, ta có: 10^k+1 + 18(k+1) - 28 = 10.10^k + 18k - 10 (2) 
Thay (1) vào (2), ta được: 
10^k+1 + 18(k+1) - 28 = 10 (27m - 18k + 28) + 18k - 10 = 270m - 162k + 270 chia hết cho 27. 
Vậy ( 10^n+18n-28 ) chia hết cho 27 với n thuộc N*.(đpcm

xin chào
25 tháng 8 2017 lúc 16:37

sai cách cm quy nạp rùi bạn ơi

nguyen hoai phuong
15 tháng 10 2017 lúc 20:10

thank for

Trần Long Tăng
Xem chi tiết
Phạm Thị Minh Thư
29 tháng 7 2017 lúc 16:32

cho A = 10n+18n-1 chia hết cho 27

suy ra 10n+18n-1 chia hết cho 27

suy ra n=1

Từ Thị Thanh Hương
Xem chi tiết
nguyen ngoc phu
1 tháng 5 2018 lúc 8:12

a,

n-n=n(n-1)=n(n2  +1)(n+1)(n-1)

vi n,n+1,n-1 la 3 so tu nhien lien tiep nen h cau chung chia het cho 3 va 2

mat khac (2;3)=1 nen S= n(n+1)(n-1)(n+1)chia het cho 6

xet n=5k  

ma(5;6)=1nen Schia het cho 30

tuong tu voi n=5k+1 thi n-1 chia het cho 5

voi n=5k+2 thi n+1 chia het cho 5

voi n=5k+3 thi n+1 chia het cho 5

voi n=5k+4 thi n+1 chia het cho 5

vay voi moi n nguyen thi n-n chia het cho 30

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 3 2017 lúc 5:39

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Chứng  minh   J = 10 n + 18 n − 1  chia hết cho 9.

Bước 2. Chứng minh  J = 10 n + 18 n − 1  chia hết cho 3.

Ta có:

J = 10 n + 18 n − 1 = 10 n − 1 + 18 n ⇒ J = 99...9 + 18 n ⇒ J = 9 11...1 + 2 n  

=> J chia hết cho 9.

+) Chứng minh  11...1 + 2 n ⋮ 3 .

Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.

Số 11...1 gồm n chữ số 1. Khi đó, 1 + 1 + ... + 1 = n .

Suy ra 11...1 và n có cùng số dư trong phép chia cho 3.

=> 11...1-n chia hết cho 3.

=> (11...1+2n) ⋮ 3

⇒ J ⋮ 27