Giúp mình với gấp lắm ạ
Tìm tập xác định của hàm số
y = \(\dfrac{cos3x}{1-sinx}\) + tanx
Tìm tập xác định cúa các hàm số sau:
a,y=\(\dfrac{cot2x}{sinx-cos3x}\)
b,y=\(\dfrac{1+tanx}{cosx+cos5x}\)
Mọi người giúp mình vs ạ!!!
tìm tập xác định của hàm số
y=\(\sqrt{\dfrac{1+sinx}{1-cosx}}\)
Ta có:
`@-1 <= sin x <= 1`
`<=>0 <= 1+sin x <= 2=>1+sin x >= 0`
`@-1 <= cos x <= 1`
`<=>1 >= -cos x >= -1`
`<=>2 >= 1-cos x >= 0=>1-cos x >= 0`
Hàm số xác định `<=>[1+sin x]/[1-cos x] >= 0`
`<=>{(1+sin x >= 0(L Đ)),(1-cos x > 0):}<=>1-cos x ne 0<=>x ne k2\pi (k in ZZ)`
`=>TXĐ: D=R\\{k2\pi| k in ZZ}`.
c1 tập xác định của hàm số \(y=\dfrac{sin2x+cosx}{tanx-sinx}\)
c2 tập xác định của hàm số \(y=\sqrt{1+cot^22x}\)
c3 tập xác định của hàm số \(y=cot\left(x-\dfrac{\pi}{4}\right)+tan\left(x-\dfrac{\pi}{4}\right)\)
1.
ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\\dfrac{sinx}{cosx}-sinx\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
2.
ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
3.
ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\cos\left(x-\dfrac{\pi}{4}\right)\ne0\end{matrix}\right.\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{2}\right)\ne0\Leftrightarrow cos2x\ne0\)
\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
câu 2 ..... \(\dfrac{cos^22x}{sin^22x}=cot^22x\) nên suy ra sin2x khác 0 đúng hơm
còn câu 3, tui ko hiểu chỗ sin(2x-pi/4).. sao ở đây rớt xuống dợ
tìm tập xác định của hàm số
y=\(\sqrt{sinx-1}\)
Có: `-1 <= sin x <= 1`
`<=>-2 <= sin x-1 <= 0=>sin x-1 <= 0`
Để hàm số đã cho xác định `<=>sin x-1 >= 0` Mà `sin x - 1 <= 0`
`=>sin x -1=0<=>x=\pi/2+k2\pi` `(k in ZZ)`
`=>TXĐ: D=\pi/2 +k2\pi` `(k in ZZ)`.
Tìm tập xác định của hàm số
y=\(\dfrac{x-1}{x^3+1}\)
ĐKXĐ:
\(x^3+1\ne0\Leftrightarrow x\ne-1\)
\(\Rightarrow D=R\backslash\left\{-1\right\}\)
tìm tập xác định của hàm số
y= \(\dfrac{x-1}{x^{2^{ }}-x+1}\)
ĐKXĐ: \(x^2-x+1\ne0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ne0\) (luôn đúng)
Hàm số xác định với mọi x hay \(D=R\)
tìm tập xác định của hàm số
y=\(\dfrac{1}{x^{4^{ }}-2x^{2^{ }}+3}\)
ĐKXĐ:
\(x^4-2x^2+3\ne0\)
\(\Leftrightarrow\left(x^2-1\right)^2+2\ne0\) (luôn đúng)
Hàm xác định trên R hay \(D=R\)
Cho hàm số y = sin x / ( 1 + tan x ) v à k ∈ Z .
Khoảng nào dưới đây không nằm trong tập xác định của hàm số?
A. - π 2 + k 2 π ; π 2 + k 2 π ;
B. π + k 2 π ; 3 π 2 + k 2 π ;
C. 3 π 4 + k 2 π ; 3 π 2 + k 2 π ;
D. π 2 + k 2 π ; 3 π 4 + k 2 π ;
tìm tập xác định của hàm số
y=\(\dfrac{x+5}{\left(x+1\right)\sqrt{x-1}}\)
Hàm số xác định: \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\x-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x>1\end{matrix}\right.\) \(\Rightarrow x>1\)
Vậy \(D=\left(1;+\infty\right)\)