giải phương trình : \(x^2=y^2\left(x+y^4+2y^2\right)\)
GIÚP MÌNH NHA
Giải hệ phương trình :
\(\hept{\begin{cases}\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\\\left(y+2\right)\sqrt{2x-y-1}+\left(x+5\right)\sqrt{3x-2y+2}+x^2+5x+6\end{cases}}\)
Các bạn giúp mình nha!
Giải hệ phương trình :
\(\hept{\begin{cases}\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\\\left(y+2\right)\sqrt{2x-y-1}+\left(x+5\right)\sqrt{3x-2y+2}+x^2+5x+6\end{cases}}\)
Các bạn giúp mình nha!
Giải phương trình :
1/\(8x^3-5x^2+10x+4=0\)
2/\(2x^2+3xy-2y^2=7\)
3/\(7\left(x^2+y^2\right)=25\left(x-y\right)\)
giúp mình, mình tick hộ cho, tks nhiều nha
ôi người ơi mọi người có thấy ai tên hồ thị hương mà là con trai chưa
Giải phương trình :
1/\(8x^2-5x^2+10x+4=0\)
2/\(2x^2+3xy-2y^2=7\)
3/\(7\left(x^2+y^2\right)=25\left(x-y\right)\)
giúp mình, mình tick hộ cho, tks nhiều nha
nếu là \(8x^3\)thì giải như thế nào bạn ? giúp mình 2 câu còn lại vs.
Giải hệ phương trình :
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^2\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
Gõ đề có sai không ạ?
\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2x^6-x^4+y^4\\-\sqrt{1+\left(x-y\right)^2}=1-x^6+x^4-2x^3y^2\end{matrix}\right.\)
Cộng theo vế HPT2
\(\sqrt{4-\left(1-x^2y\right)^2}-\sqrt{1+\left(x-y\right)^2}=\left(x^3-y^2\right)^2+1\)
\(\Leftrightarrow\sqrt{4-\left(1-x^2y\right)^2}=\sqrt{1+\left(x-y\right)^2}+\left(x^3-y^2\right)^2+1\) (1)
Có:
\(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}\le2\\\sqrt{1+\left(x-y\right)^2}+\left(x^2-y^2\right)^2+1\ge2\end{matrix}\right.\)
\(\Rightarrow\) (1) xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2\\\sqrt{1+\left(x-y\right)^2}=1\\\left(x^3-y^2\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=1\)
Giải hệ phương trình:
\(\hept{\begin{cases}\left|x-2\right|+2\left|y-1\right|=9\\x+\left|y-1\right|=-1\end{cases}}\)
Giúp mình với ai nhanh mình tick!!! Giải chi tiết giúp mình nha!!!
\(\hept{\begin{cases}|x-2|+2|y-1|=9\\x+|y-1|=-1\end{cases}}\)<=> \(\hept{\begin{cases}\left(x-2\right)+2\left(y-1\right)=9\\x+\left(y-1\right)=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x-2+2y-2=9\\x+y-1=-1\end{cases}}\)<=>\(\hept{\begin{cases}x+2y=13\\x+y=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-13\\y=13\end{cases}}\)
Giải phương trình và hệ phương trình:
1) \(-2x^2+x+1-2\sqrt{x^2+x+1}=0\)
2) \(\left\{{}\begin{matrix}x^4+y^3x+x^2y^2=3y^4\\2x^2+y^4+1=2x\left(y^2+1\right)\end{matrix}\right.\)
1) \(-2x^2+x+1-2\sqrt[]{x^2+x+1}=0\)
\(\Leftrightarrow2\sqrt[]{x^2+x+1}=-2x^2+x+1\left(1\right)\)
Ta có :
\(2\sqrt[]{x^2+x+1}=2\sqrt[]{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge\sqrt[]{3}\)
Dấu "=" xảy ra khi và chỉ khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow-2x^2+x+1=\sqrt[]{3}\)
\(\Leftrightarrow2x^2-x+\sqrt[]{3}-1=0\)
\(\Delta=1-8\left(\sqrt[]{3}-1\right)=9-8\sqrt[]{3}\)
\(pt\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\\x=\dfrac{1-\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\end{matrix}\right.\) \(\left(vì.x=-\dfrac{1}{2}\right)\)
Vậy phương trình cho vô nghiệm
Giải hệ phương trình:\(\left\{{}\begin{matrix}x^3+xy^2+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+2y^2+xy+2x-4=0\end{matrix}\right.\)
Giải hệ phương trình \(\left\{{}\begin{matrix}2x^2-y^2-4\left(x-y\right)=1\\x^2\left(x-2\right)^2+2=\left(xy-2y\right)\left(xy-4x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=y\left(x-2\right)x\left(y-4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^2-2x\right)-\left(y^2-4y\right)=1\\\left(x^2-2x\right)^2+2=\left(x^2-2x\right)\left(y^2-4y\right)\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x^2-2x=u\\y^2-4y=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2u-v=1\\u^2+2=uv\end{matrix}\right.\) \(\Rightarrow u^2+2=u\left(2u-1\right)\)
\(\Leftrightarrow u^2-u-2=0\Leftrightarrow...\)