\(\left|\overrightarrow{OA}+\overrightarrow{OB}\right|=AB\) khi nào
Cho tứ giác ABCD. Giả sử tồn tại O thỏa mãn:
\(\left\{{}\begin{matrix}\left|\overrightarrow{OA}\right|=\left|\overrightarrow{OB}\right|=\left|\overrightarrow{OC}\right|=\left|\overrightarrow{OD}\right|\\\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OB}+\overrightarrow{OB}=\overrightarrow{0}\end{matrix}\right.\) . Cmr ABCD là hình chữ nhật
1. Cho hình thoi ABCD cạnh a : \(\widehat{ABC}=60^0\) , AC cắt BD tại O . Tính theo a
a. \(\left|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right|\)
b. \(\left|\overrightarrow{OA}+\overrightarrow{OB}\right|+\left|\overrightarrow{OC}+\overrightarrow{OD}\right|\)
c. \(\left|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\right|+\left|\overrightarrow{OD}\right|\)
a/ \(\left|\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}+\overrightarrow{OD}\right|=\left|\overrightarrow{0}+\overrightarrow{0}\right|=0\)
b/ \(\left|\overrightarrow{OA}+\overrightarrow{OB}\right|+\left|\overrightarrow{OC}+\overrightarrow{OD}\right|=a+a=2a\)
c/
\(\left|\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}\right|+\left|\overrightarrow{OD}\right|=\left|\overrightarrow{OB}\right|+\left|\overrightarrow{OD}\right|=2\left|\overrightarrow{OB}\right|=2\sqrt{a^2-\frac{a^2}{4}}=a\sqrt{3}\)
Cho hai điểm \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\). Từ biểu thức \(\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} \), tìm tọa độ vectơ \(\overrightarrow {AB} \) theo tọa độ hai điểm A,B
Ta có tọa độ vectơ \(\overrightarrow {OB} ,\overrightarrow {OA} \) chính là tọa độ điểm B và A
Nên ta có \(\overrightarrow {OB} = \left( {{x_B};{y_B}} \right),\overrightarrow {OA} = \left( {{x_A};{y_A}} \right)\)
\(\overrightarrow {AB} = \overrightarrow {OB} - \overrightarrow {OA} = \left( {{x_B};{y_B}} \right) - \left( {{x_A};{y_A}} \right) = ({x_B} - {x_A};{y_B} - {y_A})\)
1. Cho tam giác ABC có O là điểm thỏa mãn \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\) và OA=OB=OC. Gọi M ,N ll là trung điểm của BC,AC . Tính số đo của \(\left(\overrightarrow{AM,}\overrightarrow{BN}\right)\)
2. Cho hình vuông ABCD có độ dài bằng cạnh a . Gọi P,Q ll là trung điểm của CD,DA . Tính \(\overrightarrow{BQ}.\overrightarrow{BP}\)
Help me ! Tks
1.
Gọi G là trọng tâm tam giác
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{OG}=\overrightarrow{0}\)
\(\Leftrightarrow O\equiv G\)
\(\Rightarrow O\) là trọng tâm tam giác ABC
\(\Rightarrow\Delta ABC\) đều
Gọi độ dài các cạnh tam giác là a
\(\overrightarrow{BN}.\overrightarrow{AM}=\dfrac{1}{4}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=-\dfrac{1}{4}a^2-\dfrac{1}{8}a^2-\dfrac{1}{8}a^2+\dfrac{1}{2}a^2=0\)
Mặt khác \(\overrightarrow{BN}.\overrightarrow{AM}=BN.AM.cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)\)
\(\Rightarrow BN.AM.cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)=0\Rightarrow cos\left(\overrightarrow{AM};\overrightarrow{BN}\right)=0\Rightarrow\left(\overrightarrow{AM};\overrightarrow{BN}\right)=90^o\)
\(BD=\dfrac{AB}{cos45^o}=\dfrac{a}{\dfrac{\sqrt{2}}{2}}=a\sqrt{2}\)
\(\overrightarrow{BQ}.\overrightarrow{BP}=\dfrac{1}{4}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\left(\overrightarrow{BC}+\overrightarrow{BD}\right)\)
\(=\dfrac{1}{4}BA.BC.cos90^o+\dfrac{1}{4}BA.BD.cos45^o+\dfrac{1}{4}BD.BC.cos45^o+\dfrac{1}{4}BD^2\)
\(=\dfrac{1}{4}a^2+\dfrac{1}{4}a^2+\dfrac{1}{2}a^2=a^2\)
Cho hình chữ nhật ABCD. Gọi O là giao điểm của AC và BD. Mệnh đề nào dưới đây là đúng:
A. \(\overrightarrow{AC}-\overrightarrow{AD}=\overrightarrow{AB}\)
B. \(\overrightarrow{AC}=\overrightarrow{BD}\)
C. \(\left|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\right|=\overrightarrow{O}\)
D. \(\overrightarrow{OA}=\overrightarrow{OB}=\overrightarrow{OC}=\overrightarrow{OD}\)
\(\overrightarrow{AC}-\overrightarrow{AD}=\overrightarrow{AC}-\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{AB}\)
Đáp án A đúng
Cho hình vuông ABCD cạnh a, O=\(AB\cap BD\). Tính:
\(\left|\overrightarrow{OA}-\overrightarrow{CB}\right|\),\(\left|\overrightarrow{AB}+\overrightarrow{DC}\right|\), \(\left|\overrightarrow{CD}-\overrightarrow{DA}\right|\)
\(\left|\overrightarrow{OA}-\overrightarrow{CB}\right|=\left|\overrightarrow{OA}+\overrightarrow{BC}\right|=\left|\overrightarrow{OA}+\overrightarrow{AD}\right|=\left|\overrightarrow{OD}\right|=OD=\dfrac{1}{2}BD=\dfrac{a\sqrt{2}}{2}\)
\(\left|\overrightarrow{AB}+\overrightarrow{DC}\right|=\left|\overrightarrow{AB}+\overrightarrow{AB}\right|=2\left|\overrightarrow{AB}\right|=2AB=2a\)
\(\left|\overrightarrow{CD}-\overrightarrow{DA}\right|=\left|\overrightarrow{CD}+\overrightarrow{AD}\right|=\left|\overrightarrow{BA}+\overrightarrow{AD}\right|=\left|\overrightarrow{BD}\right|=BD=a\sqrt{2}\)
Cho hình vuông ABCD cạnh a; O=\(AB\cap BD\). Tính:
\(\left|\overrightarrow{OA}-\overrightarrow{CB}\right|\), \(\left|\overrightarrow{AB}+\overrightarrow{DC}\right|\), \(\left|\overrightarrow{CD}-\overrightarrow{DA}\right|\)
1. Cho hình vuông ABCD có cạnh bằng a. Độ dài \(\left|\overrightarrow{AD}+\overrightarrow{AB}\right|\) bằng:
A. 2a
B.a\(\sqrt{2}\)
C.\(\frac{a\sqrt{3}}{2}\)
D. \(\frac{a\sqrt{2}}{2}\)
2. Cho hình thang ABCD có AB song song với CD. Cho AB=2a, CD= a , O là trung điểm của AD. Khi đó
A.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=\frac{3a}{2}\)
B. \(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=a\)
C.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=2a\)
D.\(\left|\overrightarrow{OB}+\overrightarrow{OC}\right|=3a\)
3. Cho tam giác đều ABC cạnh a. Khi đó:
A. \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\)
B.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=a\sqrt{3}\)
C. \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\frac{a\sqrt{3}}{2}\)
D.\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2a\)
Cho ngũ giác đều ABCDE nội tiếp đường tròn tâm O bán kính R. Tính \(\left|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}+\overrightarrow{OE}\right|\).