Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Mai Hạ
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 6 2020 lúc 17:09

\(\frac{1+sin^2x}{1-sin^2x}=\frac{1+sin^2x}{cos^2x}=\frac{1}{cos^2x}+\frac{sin^2x}{cos^2x}=1+tan^2x+tan^2x=1+2tan^2x\)

\(\frac{sin^3a-cos^3a}{sina-cosa}-sina.cosa=\frac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)}{sina-cosa}-sina.cosa\)

\(=sin^2a+cos^2a+sina.cosa-sina.cosa=1\)

\(\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cosx.cos2x}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)

\(\frac{1-2sin^2a}{cosa+sina}+\frac{2cos^2a-1}{cosa-sina}=\frac{cos^2a-sin^2a}{cosa+sina}+\frac{cos^2a-sin^2a}{cosa-sina}\)

\(=\frac{\left(cosa+sina\right)\left(cosa-sina\right)}{cosa+sina}+\frac{\left(cosa+sina\right)\left(cosa-sina\right)}{cosa-sina}=cosa-sina+cosa+sina=2cosa\)

\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)

Đăng Trần Hải
Xem chi tiết
Vũ Đình Thái
11 tháng 10 2020 lúc 20:36

Có \(\sin^2a+\cos^2a=1\)\(\Leftrightarrow\sin^2a=1-\cos^2a=1-\left(\frac{1}{3}\right)^2=\frac{8}{9}\)

\(\Leftrightarrow\sin a=\frac{\sqrt{8}}{3}\)

Xét  \(B=\frac{\sin a-3\cos a}{\sin a+2\cos a}=\frac{\frac{\sqrt{8}}{3}-3\cdot\frac{1}{3}}{\frac{\sqrt{8}}{3}+2\cdot\frac{1}{3}}=\frac{7-5\sqrt{2}}{2}\)

Khách vãng lai đã xóa
Hằng Vũ
Xem chi tiết
Imma Your Son
Xem chi tiết
Le Nhat Phuong
13 tháng 9 2017 lúc 17:36

  tana = sina/cosa = 2 => sina = 2cosa 
Thay sina = 2cosa vào biểu thức, ta có: 
(sina + cosa)/(sina - cosa) = (2cosa + cosa)/(2cosa - cosa) = 3cosa/cosa = 3 
Kết luận: (sina + cosa)/(sina - cosa) = 3

P/s: Bài này tui làm rồi

Imma Your Son
13 tháng 9 2017 lúc 17:32

Ai biết làm thì trả lời hộ mình với, cảm ơn rất nhiều ! Xin lỗi vì viết câu trả lời không liên quan, thật lòng xin lỗi !

Imma Your Son
13 tháng 9 2017 lúc 17:39

bạn ơi mình ghi \(tana\)=3 mà :[ sao bạn ghi là = 2 lúc đầu z

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 7 2018 lúc 9:00

Vì  π < a < 3 π 2 nên  sina < 0; cosa < 0. Ta có

sin α - 2 cos α = 1 sin 2 α + cos 2 α = 1 ⇒ 1 + 2 cos α 2 + cos 2 α = 1 ⇒ 5 cos 2 α + 4 cos α = 0 ⇒ cos α = - 4 5  

Suy ra  α = - 1 - cos 2 α = - 3 5 ;  tan α = 3 4 ;  c o t α = 4 3 . Vậy A = 2tana - cota = 2 . 3 4 - 4 3 = 1 6

Đáp án B

Hương Đỗ
Xem chi tiết
Võ Yến My
3 tháng 3 2017 lúc 11:47

3

Nguyễn Anh Thư
Xem chi tiết
Khách vãng lai
2 tháng 8 2020 lúc 17:13

lớp 8 chưa học lượng giác đâu bn

Khách vãng lai đã xóa
Nguyễn Anh Thư
2 tháng 8 2020 lúc 17:23

Mình quên mất. Đng học lp 8 nhưng học trc chương trình nên quên sửa lớp luôn

Khách vãng lai đã xóa
KhảTâm
3 tháng 8 2020 lúc 19:40

Ta có \(y'=x^2-\left(sina+cosa\right)x+\frac{3}{4}sin2a\)

Để y đồng biến trên R thì \(y'\ge0,\forall x\inℝ\)

\(\Leftrightarrow\Delta\le0\)

\(\Leftrightarrow\left(sina=cosa\right)^2-3sin2a\le0\)

\(\Leftrightarrow1-2sin2a\le0\)

\(\Leftrightarrow sin2a\ge\frac{1}{2}\Leftrightarrow\frac{\eta}{6}+k2\eta\le2a\le\frac{5\eta}{6}+k2\eta\)

\(\Leftrightarrow k\eta+\frac{\eta}{12}\le a\le\frac{5\eta}{12}+k\eta.\)

Khách vãng lai đã xóa
Nguyễn Thị Bích Vân
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 5 2019 lúc 16:33

\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)

\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)

\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)

\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)

Nguyễn Việt Lâm
1 tháng 5 2019 lúc 16:37

\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)

\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)

\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)

Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)

\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)

\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)

Nguyễn Việt Lâm
1 tháng 5 2019 lúc 16:45

Bài 2:

\(sin\frac{A+B}{2}=sin\left(\frac{180^0-C}{2}\right)=sin\left(90^0-\frac{C}{2}\right)=cos\frac{C}{2}\)

b/

\(A=cosx+cos\left(x+\frac{2\pi}{3}\right)+cos\left(x+\frac{4\pi}{3}\right)=cosx+2cos\left(x+\pi\right).cos\frac{\pi}{3}\)

\(=cosx-2cosx.\frac{1}{2}=0\)

c/

\(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}cos\frac{C}{2}=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)=4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)

d/ \(\frac{cos2a}{1+sin2a}=\frac{cos^2a-sin^2a}{cos^2a+sin^2a+2sina.cosa}=\frac{\left(cosa-sina\right)\left(cosa+sina\right)}{\left(cosa+sina\right)^2}=\frac{cosa-sina}{cosa+sina}\)

e/

\(E=\frac{sina+cosa}{cos^3a}=\frac{1}{cos^2a}\left(tana+1\right)=\left(1+tan^2a\right)\left(tana+1\right)\)

\(E=tan^3a+tan^2a+tana+1\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 12 2019 lúc 6:09

Tập xác định: D = R; y′ =  x 2  − (1 + 2cosa)x + 2cosa

y′= 0 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y’ < 0 ở ngoài khoảng nghiệm nên để hàm số đồng biến với mọi x > 1 thì 2cosa ≤ 1

Giải sách bài tập Toán 12 | Giải sbt Toán 12

(vì a ∈ (0; 2 π ).