Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Cao Quốc Anh
Xem chi tiết
nguyễn thị lan hương
10 tháng 5 2018 lúc 15:55

ta có a+b+c=0       =>     a=-b-c,         b=-a-c,            c=-a-b

thay vào A ta được 

 A=(1-(b+c)/b)(1-(a+c)/c)(1-(a+b)/a)

   =(1-1-c/b)(1-1-a/c)(1-1-b/a)

   =(-c/b)(-a/c)(-b/a)

   =(-abc)/abc

    =-1

Không Tên
10 tháng 5 2018 lúc 19:57

bạn Nguyễn Thị Lan Hương làm đúng rồi, mk lm cách khác nhé:

           BÀI LÀM

          \(a+b+c=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

    \(=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)

    \(=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{b}=-1\)

Achana
Xem chi tiết
Ngọc Hoàng
Xem chi tiết
Phung Ngoc Tam
Xem chi tiết
Thanh Tùng DZ
21 tháng 4 2019 lúc 15:41

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

Thanh Tùng DZ
21 tháng 4 2019 lúc 15:43

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

Thanh Tùng DZ
21 tháng 4 2019 lúc 15:52

Xét hiệu \(A=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{c}-\frac{c}{b}-\frac{a}{c}\)

\(\frac{a^2c+b^2a+c^2b-b^2c-c^2a-a^2b}{abc}\)

\(\frac{\left(c-b\right)\left(a-c\right)\left(a-b\right)}{abc}\)

Ta thấy c -b \(\ge\)0 ; a - c \(\le\)0 ; a - b \(\le\)0 nên ( c - b ) ( a - c ) ( a - b )\(\ge\)0

Mà abc > 0 nên A \(\ge\)0 => ....

dilan
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 8 2021 lúc 22:30

\(P^2=\left(a-b\right)^2\left(b-c\right)^2\left(a-c\right)^2\)

Không mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\) \(\Rightarrow\left\{{}\begin{matrix}\left(b-c\right)^2\le b^2\\\left(a-c\right)^2\le a^2\end{matrix}\right.\)

\(\Rightarrow P^2\le\left(a-b\right)^2a^2b^2=\dfrac{1}{4}\left(a^2-2ab+b^2\right).\left(2ab\right).\left(2ab\right)\le\dfrac{1}{108}\left(a^2-2ab+b^2+2ab+2ab\right)^3\)

\(\Rightarrow P^2\le\dfrac{1}{108}\left(a+b\right)^6\le\dfrac{1}{108}\left(a+b+c\right)^6=\dfrac{27}{4}\)

\(\Rightarrow P\le\dfrac{3\sqrt{3}}{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3-\sqrt{3}}{2};\dfrac{3+\sqrt{3}}{2};0\right)\) và các hoán vị

trần huy đức
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2018 lúc 11:37

Ta có:

 

Dấu “=” xảy ra khi và chỉ khi

Vậy số bộ a,b,c thỏa mãn điều kiện đã cho là 1.

Chọn B.

Minh Ngọc
Xem chi tiết
hj
Xem chi tiết
TrịnhAnhKiệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2023 lúc 23:03

b: (3x-2)^5+(5-x)^5+(-2x-3)^5=0

Đặt a=3x-2; b=-2x-3

Pt sẽ trở thành:

a^5+b^5-(a+b)^5=0

=>a^5+b^5-(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5)=0

=>-5a^4b-10a^3b^2-10a^2b^3-5ab^4=0

=>-5a^4b-5ab^4-10a^3b^2-10a^2b^3=0

=>-5ab(a^3+b^3)-10a^2b^2(a+b)=0

=>-5ab(a+b)(a^2-ab+b^2)-10a^2b^2(a+b)=0

=>-5ab(a+b)(a^2-ab+b^2+2ab)=0

=>-5ab(a+b)(a^2+b^2+ab)=0

=>ab(a+b)=0

=>(3x-2)(-2x-3)(5-x)=0

=>\(x\in\left\{\dfrac{2}{3};-\dfrac{3}{2};5\right\}\)