a) Tìm x biết
\(\dfrac{315-x}{101}+\dfrac{313-x}{103}+\dfrac{311-x}{105}+\dfrac{309-x}{107}+4=0\)
b) Cho a,b,c là các số thực khác 0 thỏa mãn
\(\dfrac{a-b+c}{b}=\dfrac{a+b-c}{c}=\dfrac{-a+b+c}{a}\)
Tính giá trị của biểu thức :
P=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
cho 3 số a,b,c khác 0 thỏa mãn : \(\dfrac{2022a+b+c}{a}\) = \(\dfrac{a+2022b+c}{b}\) = \(\dfrac{a+b+2022c}{c}\) . tính giá trị của biểu thức P = \(\dfrac{a+b}{c}\) = \(\dfrac{b+c}{a}\) = \(\dfrac{a+c}{b}\)
Cho ba số a, b, c khác nhau và khác 0 thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\) chứng minh rằng \(M=\dfrac{b+c}{a}=\dfrac{a+c}{b}=\dfrac{a+b}{c}\)
Cho ba số a, b, c khác nhau và khác 0 thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\) chứng minh rằng \(M=\dfrac{b+c}{a}=\dfrac{a+c}{b}=\dfrac{a+b}{c}\)
Cho ba số a, b, c khác nhau và khác 0 thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\) chứng minh rằng \(M=\dfrac{b+c}{a}=\dfrac{a+c}{b}=\dfrac{a+b}{c}\)
Cho ba số a; b; c > 0 thỏa mãn: \(\dfrac{a+b-3c}{c}=\dfrac{b+c-3a}{a}=\dfrac{c+a-3b}{b}\)
Chứng minh rằng a = b =c.
Cho a+b+c+d ≠ 0 thỏa mãn:
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính P = \(\dfrac{2a+5b}{3c+4d}+\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
1.Cho a,b,c là các số khác 0 thỏa mãn b2=ac.CMR:\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
Cho ba số a, b, c thỏa mãn 0 ≤ a ≤ b ≤ c ≤ 1
CM: \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\) ≤ 2