Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=\frac{2a+2b+2c}{a+b+c}=2\)
=>a+b=2c; b+c=2a; a+c=2b
\(A=\frac{a}{b+c}+\frac{a+b}{c}\)
\(=\frac{a}{2a}+\frac{2c}{c}=\frac12+2=\frac52\)