Tìm số tự nhiên \(\overline{abc}\) bé nhất thỏa mãn \(\overline{abc}\)=\(n^2\)-1 và \(\overline{cba}\)=\(n^2\)-4n +4
Vậy \(\overline{abc}\)=...
Tìm số tự nhiên bé nhất thỏa mãn: và
Trả lời: .........
Theo bài ra, ta có:
(100a+10b+c)=n2 -1 (100c+10b+a)=n2-4n+4
(100a+10b+c)-(100c+10b+a)=(n2 -1)-(n2-4n+4)
=>99a-99b=n2-1-n2+4n-4
99.(a-c)=4n-5
=> 4n-5 chia hết cho 99
4n-5 thuộc {0;99;198;297;396;495;594;693;....}
4n thuộc {5;104;203;302;401;500;...}
n thuộc {26;125;...}
=> n=26
=>=675
nhớ ticks cho mình nha
Ta có :
abc = 100a+10b+c (1)
cba = 100c+10b+a (2)
Thay (2) vào (1) ta được :
99( a - c ) = 4n - 5
=> 4n-5 \(⋮\) 99
Vì 100 \(\le\) abc \(\le\) 999 nên :
100 \(\le\) \(n^2-1\)\(\le\) 999 =>101 \(\le\) \(n^2-1\) \(\le\) 1000 => 11 \(\le\) 31 đến 39 \(\le\) 4n - 5 \(\le\) 119
Vì 4n - 5 \(⋮99\) nên :
n =26 ; abc = 675
tìm số tự nhiên có 3 chữ số \(\overline{abc}\)sao cho \(\overline{abc}=n^2-1\)và \(\overline{cba}=\left(n-2\right)^2\)
Câu hỏi của Nguyễn Thị Linh Chi - Toán lớp 6 - Học toán với OnlineMath
tìm số tự nhiên \(\overline{abc}\)bé nhất thỏa mãn :\(\overline{abc}\)=\(n^2\)-1 và \(\overline{cba}\)\(\left(n-2\right)^2\)
Để mình giúp thỏ nghen!! hihihihi
\(abc=n^2-1;cba=\left(n-2\right)^2=n^2-4n+4\\ \Rightarrow abc-cba=\left(n^2-1\right)-\left(n^2-4n+4\right)\\ =n^2-1-n^2+4n-4\\ =4n-5\)
Ta lại có :
\(100\le cba\le999\\ \Rightarrow100\le\left(n-2\right)^2\le999\\ \Rightarrow10\le n-2\le31\\ \Rightarrow12\le n\le33\\ \Rightarrow12.4-5\le4n-5\le4.33-5\\ \Rightarrow43\le4n-5\le127\)
Mà \(abc-cba=99\left(a-c\right)⋮99\\ \Rightarrow4n-5⋮99\\ \Rightarrow4n-5=99\\ \Rightarrow n=26\\ \Rightarrow abc=675\)
Chúc bạn học tốt nhé !!!
Tìm tất cả các số tự nhiên có 3 chữ số \(\overline{abc}\) sao cho \(\overline{abc}\) = n2 - 1 và \(\overline{cba}\) = (n - 2)2
giúp nhanh lên gấplắm mình tick ch0o
Ta có:
\(\overline{abc}=100a+10b+c=n^2-1\left(1\right)\)
\(\overline{cba}=100c+10b+a=\left(n-2\right)^2=n^2-4n+4\left(2\right)\)
Từ (1) và (2) suy ra:
\(99a-99c=4n-5\\ \Leftrightarrow99\left(a-c\right)=4n-5\)
Suy ra: \(4n-5⋮99\)
Ta có: \(100\le n^2-1\le999\)
\(\Leftrightarrow101\le n^2\le1000\)
\(\Leftrightarrow11\le n\le31\)
\(\Leftrightarrow44\le4n\le124\)
\(\Leftrightarrow39\le4n-5\le119\)
Suy ra: \(4n-5=99\)
Suy ra: \(n=26\)
Suy ra: \(\overline{abc}=26^2-1=675\)
Tìm số tự nhiên \(\overline{abc}\)biết \(b^2\)=\(\overline{ac}\);\(\overline{abc}-\overline{cba}=495\)
Ta có: \(\overline{abc}-\overline{cba}=495\)
\(\Rightarrow100a+10b+c-100c-10b-a=495\)
\(\Rightarrow99a-99c=495\)
\(\Rightarrow99.\left(a-c\right)=495\Rightarrow a-c=5\Rightarrow a=5+c\)
Mà \(b^2=\overline{ac}\Rightarrow b^2=10a+c\)
=> \(b^2=10.\left(5+c\right)+c=50+11c\)
Vì \(\overline{ac}\) có 2 chữ số nên:
b^2 < 100
Mà b^2 > 50
=> b^2 thuộc 64,81
b^2 = 64 => 11c = 14 (vô lí)
b^2 = 81 => 11c = 31 (vô lí)
Vậy không có abc thỏa mãn
Tìm \(\overline{abc}\) biết : \(\overline{abc}\) = n2 - 1 và \(\overline{cba}\) = ( n -2 )2 . ( n \(\in\) N ; n > 2 )
\(\begin{cases}100a+10b+c=n^2-1\left(1\right)\\100c+10b+a=n^2-4n+4\left(2\right)\end{cases}\)
Lấy (2) trừ (1) theo vế được :
\(99\left(c-a\right)=5-4n\)
Mặt khác, ta có \(100\le n^2-1\le999\) nên \(11\le n\le31\)
Xét n trong khoảng trên được n = 26 thỏa mãn bài toán.
Tìm số tự nhiên có 3 chữ số \(\overline{abc}\) thõa mãn: \(\left\{{}\begin{matrix}\overline{abc}=n^2-1\\\overline{cba}=\left(n-2\right)^2\end{matrix}\right.\)
ta có : abc = 100a + 10b + c (1)
cba = 100c + 10b + a = (n-2)2 (2)
lấy (2) trừ (1) ta có: 99(a - c) = 4n - 5 => 4n - 5 \(⋮\) 99
100 \(\le\) n2 - 1 \(\le\) 999
<=> \(101\le n^2\le1000\)
<=> \(11\le n\le31\)
<=> \(44\le4n\le124\)
<=> \(39\le4n-5\le119\)
mà 4n - 5 \(⋮\) 99
=> 4n - 5 = 99
=> n = 26
=>abc = 262 - 1 = 675
VẬy.....
abc là số tự nhiên có 3 chữ số thỏa mãn \(\overline{abc}⋮n;\overline{bca}⋮n;\overline{cab}⋮n\)
CMR \(a^3+b^3+c^3-3abc⋮n\)
Tìm tất cả các số tự nhiên có 3 chữ số \(\overline{abc}\) sao cho \(\overline{abc}=n^2-1\) và \(\overline{cba}=\left(n-2\right)^2\)