Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuyết Nhung Đinh
Xem chi tiết
Võ Tuấn Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 8 2023 lúc 16:23

ĐKXĐ: x>0 và y>0

Sửa đề: \(A=\left(x-\dfrac{\sqrt{xy^2}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{y}}{\sqrt{xy}+y}-\dfrac{\sqrt{x}}{\sqrt{xy}-x}+\dfrac{\sqrt{y}}{x-y}\right)\)

\(=\left(x-\dfrac{y\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{y}}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)}+\dfrac{\sqrt{y}}{x-y}\right)\)

\(=\left(x-y\right)\cdot\left(\dfrac{1}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{y}}{x-y}\right)\)

\(=\left(x-y\right)\cdot\dfrac{\sqrt{x}-\sqrt{y}+\sqrt{x}+\sqrt{y}+\sqrt{y}}{x-y}\)

\(=2\sqrt{x}+\sqrt{y}\)

Võ Tuấn Nguyên
Xem chi tiết
Toru
31 tháng 8 2023 lúc 10:59

Sửa đề: a = b => x = y

\(P=\left(1-\dfrac{\sqrt{2xy}}{\sqrt{x^2+y^2}}\right)\left(1+\dfrac{\sqrt{2xy}}{\sqrt{x^2+y^2}}\right)\) (ĐK: \(x,y>0\))

\(=1-\left(\dfrac{\sqrt{2xy}}{\sqrt{x^2+y^2}}\right)^2\)

\(=1-\dfrac{\left(\sqrt{2xy}\right)^2}{\left(\sqrt{x^2+y^2}\right)^2}\)

\(=1-\dfrac{2xy}{x^2+y^2}\)

\(=\dfrac{x^2+y^2-2xy}{x^2+y^2}\)

\(=\dfrac{\left(x-y\right)^2}{x^2+y^2}\)

Khi x = y, ta được: \(P=\dfrac{\left(x-y\right)^2}{x^2+y^2}=\dfrac{\left(x-x\right)^2}{x^2+y^2}=0\)

#Urushi

Đen xjnh géi
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 23:51

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(P=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\dfrac{1}{x+2}\)

\(=\dfrac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{1}\)

\(=\dfrac{x-2x+4+x-2}{x-2}\)

\(=\dfrac{2}{x-2}\)

Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 23:51

b) Để P nguyên thì \(2⋮x-2\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2\right\}\)

hay \(x\in\left\{3;1;4;0\right\}\)

Võ Tuấn Nguyên
Xem chi tiết
Akai Haruma
15 tháng 9 2023 lúc 17:42

Lời giải:

ĐKXĐ: $x>0; x\neq 1; x\neq 9$

\(A=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{(\sqrt{x}+1)(\sqrt{x}-1)+(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-1)}\)

\(=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{x-1-(x-9)}{(\sqrt{x}-3)(\sqrt{x}-1)}=\frac{1}{\sqrt{x}(\sqrt{x}-1)}:\frac{8}{(\sqrt{x}-1)(\sqrt{x}-3)}\)

\(=\frac{1}{\sqrt{x}(\sqrt{x}-1)}.\frac{(\sqrt{x}-1)(\sqrt{x}-3)}{8}=\frac{\sqrt{x}-3}{8\sqrt{x}}\)

Để $A<0\Leftrightarrow \frac{\sqrt{x}-3}{8\sqrt{x}}<0$

$\Leftrightarrow \sqrt{x}-3<0$ (do $8\sqrt{x}>0$)

$\Leftrightarrow \sqrt{x}<3$

$\Leftrightarrow 0\leq x< 9$

Kết hợp với đkxđ suy ra $0< x< 9; x\neq 1$

Khi $x=3-2\sqrt{2}=(\sqrt{2}-1)^2$

$\Rightarrow \sqrt{x}=\sqrt{2}-1$

Khi đó: $A=\frac{\sqrt{x}-3}{8\sqrt{x}}=\frac{\sqrt{2}-4}{8(\sqrt{2}-1)}=\frac{-2-3\sqrt{2}}{8}$

Võ Tuấn Nguyên
Xem chi tiết
HT.Phong (9A5)
15 tháng 9 2023 lúc 5:35

\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\right)\) (ĐK: \(x>0;x\ne1;x\ne9\))

\(=\left[\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}+\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\right]\)

\(=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-1+x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{2x-10}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{2\left(x-5\right)}\)

\(=\dfrac{\sqrt{x}-3}{2\sqrt{x}\left(x-5\right)}\)

\(=\dfrac{\sqrt{x}-3}{2x\sqrt{x}-10\sqrt{x}}\)

\(A>0\) khi

\(\dfrac{\sqrt{x}-3}{2x\sqrt{x}-10\sqrt{x}}>0\)

TH1: 

\(\sqrt{x}-3>0\) và \(2x\sqrt{x}-10\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}>3\) và \(2\sqrt{x}\left(x-5\right)>0\)

\(\Leftrightarrow x>9\) và \(x>5\)

\(\Leftrightarrow x>9\)

TH2: 

\(\sqrt{x}-3< 0\) và \(2x\sqrt{x}-10\sqrt{x}< 0\)

\(\Leftrightarrow\sqrt{x}< 3\) và \(2\sqrt{x}\left(x-5\right)< 0\)

\(\Leftrightarrow x< 9\) và \(x< 5\)

\(\Leftrightarrow x< 5\)

Vậy A > 0 khi \(\left[{}\begin{matrix}x>9\\x< 5\end{matrix}\right.\) 

Ta có: 

\(x=3-2\sqrt{2}=\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1^2=\left(\sqrt{2}-1\right)^2\)

\(A=\dfrac{\sqrt{\left(\sqrt{2}-1\right)^2}-3}{2\cdot\left(\sqrt{2}-1\right)^2\cdot\sqrt{\left(\sqrt{2}-1\right)^2}-10\cdot\sqrt{\left(\sqrt{2}-1\right)^2}}\)

\(A=\dfrac{\left|\sqrt{2}-1\right|-3}{2\cdot\left(3-2\sqrt{2}\right)\cdot\left|\sqrt{2}-1\right|-10\cdot\left|\sqrt{2}-1\right|}\)

\(A=\dfrac{\sqrt{2}-1-3}{\left(6-4\sqrt{2}\right)\left(\sqrt{2}-1\right)-10\left(\sqrt{2}-1\right)}\)

\(A=\dfrac{\sqrt{2}-4}{6\sqrt{2}-6-8+4\sqrt{2}-10\sqrt{2}+10}\)

\(A=\dfrac{\sqrt{2}-4}{-4}\)

\(A=\dfrac{4-\sqrt{2}}{4}\)

uchiha sasuke
Xem chi tiết
Anh Kiên lớp 7 Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 2 2023 lúc 22:12

a: ĐKXĐ: x<>1; x<>2; x<>-2; x<>-1

\(P=\dfrac{2017x+2017-2016x+2016-2014x-2016}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-2015x+2017}{x^2-4}\)

Linnz
Xem chi tiết
YangSu
8 tháng 7 2023 lúc 18:53

\(a,P\) xác định \(\Leftrightarrow\left[{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)

\(b,P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\\ =\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{x-1-x+4}\\ =\dfrac{1}{\sqrt{x}}.\dfrac{\sqrt{x}-2}{3}\\ =\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

\(c,P=\dfrac{1}{4}\Leftrightarrow\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\\ \Leftrightarrow\dfrac{4\left(\sqrt{x}-2\right)-3\sqrt{x}}{12\sqrt{x}}=0\\ \Leftrightarrow4\sqrt{x}-8-3\sqrt{x}=0\\ \Leftrightarrow\sqrt{x}=8\\ \Leftrightarrow x=64\left(tmdk\right)\)

Vậy \(x=64\) thì \(P=\dfrac{1}{4}\)