Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Song Minguk
Xem chi tiết
Nguyễn Việt Hoàng
Xem chi tiết
Trần Khánh Châu
9 tháng 2 2020 lúc 9:24

SIêu nhân henshin! kkk

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
9 tháng 2 2020 lúc 9:27

\(102=x^2+y^2+52\)

\(=\left(x^2+16\right)+\left(y^2+36\right)\)

\(\ge8\left|x\right|+12\left|y\right|\ge8x+12y=4A\)

\(\Rightarrow A\le26\) tại x=4;y=6

Không chắc:v Nếu có thêm dấu giá trị tuyệt đối nữa thì ko dùng cosi được thì phải

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
9 tháng 2 2020 lúc 9:32

zZz Cool Kid_new zZz Vậy à bạn , cảm ơn nhiều nhé!!

Khách vãng lai đã xóa
Minions
Xem chi tiết

tự lm nhóe

Nguyễn Công Tỉnh
16 tháng 10 2019 lúc 19:46

Tự tìm ĐKXĐ nhé

\(P=\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}\)

\(=\frac{1}{\sqrt{x}+2}-\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\sqrt{x}-3}\)

\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)

c, \(P=\frac{\sqrt{x}+4}{\sqrt{x}+2}=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)

Để \(P\in Z\Rightarrow1+\frac{2}{\sqrt{x}+2}\in Z\)

\(\Rightarrow\sqrt{x}+2\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)

\(\Rightarrow\sqrt{x}=\left\{-1;0\right\}\)

\(\Rightarrow x=\left\{0\right\}\)

Kết hợp với ĐKXĐ =>...

người bị ghét :((
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 6 2020 lúc 23:06

ĐKXĐ: ...

Đặt \(\sqrt{2+x}+\sqrt{2-x}=t>0\)

\(t=\sqrt{2+x}+\sqrt{2-x}\le\sqrt{2\left(2+x+2-x\right)}=2\sqrt{2}\) (Bunhiacopxki)

\(t^2=4+2\sqrt{4-x^2}\ge4\Rightarrow t\ge2\) (1)

\(\Rightarrow2\le t\le2\sqrt{2}\)

Cũng từ (1) ta có \(\sqrt{4-x^2}=\frac{t^2-4}{2}\)

\(\Rightarrow P=t-\frac{t^2-4}{2}=\frac{-t^2+2t+4}{2}=\frac{t\left(2-t\right)+4}{2}\)

Do \(t\ge2\Rightarrow2-t\le0\Rightarrow t\left(2-t\right)\le0\)

\(\Rightarrow P\le\frac{0+4}{2}=2\Rightarrow P_{max}=2\) khi \(t=2\) hay \(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

\(P=\frac{-t^2+2t+4}{2}=\frac{-t^2+2t+8-4\sqrt{2}-4+4\sqrt{2}}{2}=\frac{\left(2\sqrt{2}-t\right)\left(t+2\sqrt{2}-2\right)-4+4\sqrt{2}}{2}\)

Do \(t\le2\sqrt{2}\Rightarrow2\sqrt{2}-t\ge0\Rightarrow\left(2\sqrt{2}-t\right)\left(t+2\sqrt{2}-2\right)\ge0\)

\(\Rightarrow P\ge\frac{-4+4\sqrt{2}}{2}=2\sqrt{2}-2\)

\(\Rightarrow P_{min}=2\sqrt{2}-2\) khi \(t=2\sqrt{2}\Leftrightarrow2+x=2-x\Rightarrow x=0\)

Lê Bảo Ngọc
Xem chi tiết
Thục Trinh
Xem chi tiết
Akai Haruma
4 tháng 3 2019 lúc 0:27

Câu 1:

Tìm max:

Áp dụng BĐT Bunhiacopxky ta có:

\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)

\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)

Vậy \(y_{\max}=10\)

Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)

Tìm min:

Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

Chứng minh:

\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)

\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).

Dấu "=" xảy ra khi $ab=0$

--------------------

Áp dụng bổ đề trên vào bài toán ta có:

\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)

\(\sqrt{5-x}\geq 0\)

\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)

Vậy $y_{\min}=6$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)

Akai Haruma
4 tháng 3 2019 lúc 0:30

Bài 2:

\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)

Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:

\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)

Vậy \(A_{\min}=3989\)

Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)

Akai Haruma
4 tháng 3 2019 lúc 0:32

Bài 3:

Ta thấy:

\(2x-x^2+7=8-(x^2-2x+1)=8-(x-1)^2\leq 8, \forall x\in\mathbb{R}\)

\(\Rightarrow 2+\sqrt{2x-x^2+7}\leq 2+\sqrt{8}=2+2\sqrt{2}\)

\(\Rightarrow B=\frac{3}{2+\sqrt{2x-x^2+7}}\geq \frac{3}{2+2\sqrt{2}}\)

Vậy GTNN của $B$ là \(\frac{3}{2+2\sqrt{2}}\).

Đẳng thức xảy ra tại \((x-1)^2=0\Leftrightarrow x=1\)

Minh Thảo
Xem chi tiết
Trần Thanh Phương
1 tháng 9 2019 lúc 14:46

\(A=1+\sqrt{x-2}\)

Do \(\sqrt{x-2}\ge0\forall x>2\) nên \(A\ge1\forall x>2\)

Vậy \(minA=1\Leftrightarrow x=2\)

__________

\(B=5-\sqrt{2x-1}\)

Do \(\sqrt{2x-1}\ge0\forall x\ge\frac{1}{2}\)nên \(B\le5\forall x\ge\frac{1}{2}\)

Vậy \(maxB=5\Leftrightarrow x=\frac{1}{2}\)

Qasalt
Xem chi tiết
Admin (a@olm.vn)
Xem chi tiết