CMR: 222333 + 333222 chia hết cho 13
Dùng đồng dư mod nhá
CMR: 22225555 + 55552222 chia hết cho 7 (dùng đồng dư mod)
Ta có:
\(2222\equiv-4\left(mod7\right)\Rightarrow2222^{5555}\equiv\left(-4\right)^{5555}\left(mod7\right)\left(1\right)\)
\(5555\equiv4\left(mod7\right)\Rightarrow5555^{2222}\equiv4^{2222}\left(mod7\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow2222^{5555}+5555^{2222}\equiv\left(-4\right)^{5555}+4^{2222}\left(mod7\right)\)
Mà (-4)5555 + 42222 = -42222.(43333 - 1) = -42222.[(43)1111 - 1] = -42222.(641111 - 1)
Lại có: \(64\equiv1\left(mod7\right)\Rightarrow64^{1111}\equiv1\left(mod7\right)\)
\(\Rightarrow64^{1111}-1\equiv1-1\left(mod7\right)\) hay \(64^{1111}-1⋮7\)
\(\Rightarrow-4^{2222}.\left(64^{1111}-1\right)⋮7\)
hay \(2222^{5555}+5555^{2222}⋮7\left(đpcm\right)\)
Chứng minh 1n+2n+3n+4n ⋮ 5 ⇔ n không chia hết cho 4(với mọi số tự nhiên n khác 0)
gợi ý : 1 đồng dư 1 (mod 5)
4 đồng dư -1(mod 5)
Cho aϵZ. CMR:
a) Nếu a đồng dư 1 (mod 2) thì a2 đồng dư 1 (mod 8).
b) Nếu a đồng dư 1 (mod 3) thì a3 đồng dư 1 (mod 9)
Lời giải:
a)
$a\equiv 1\pmod 2$ nên $a$ có dạng $2k+1$ $(k\in\mathbb{Z}$
Khi đó:
$a^2=(2k+1)^2=4k^2+4k+1=4k(k+1)+1$
Vì $k(k+1)$ là tích 2 số nguyên liên tiếp nên $k(k+1)\vdots 2$
$\Rightarrow 4k(k+1)\vdots 8$
$\Rightarrow a^2=4k(k+1)+1$ chia $8$ dư $1$ hay $a^2\equiv 1\pmod 8$
b)
$a\equiv 1\pmod 3\Rightarrow a-1\equiv 0\pmod 3(1)$ hay
Lại có:
$a\equiv 1\pmod 3\Rightarrow a^2+a+1\equiv 1+1+1\equiv 0\pmod 3(2)$
Từ $(1);(2)\Rightarrow (a-1)(a^2+a+1)\equiv 0\pmod 9$
hay $a^3-1\equiv 0\pmod 9\Leftrightarrow a^3\equiv 1\pmod 9$
CMR:
a) Nếu a đồng dư 1 (mod2) thì a^2 đồng dư 1 (mod 8)
b) Nếu a đồng dư 1(mod 3) thì a^3 đồng dư 1 (mod9)
C/m : 2 mũ 1995 trừ 1 chia hết cho 31 . Chú ý: 32 đồng dư với 1 ( mod 31 )
32 đồng dư với 1 ( mod 31 )
25 đồng dư với 1 ( mod 31 )
(25)399 đồng dư với 1 ( mod 31 )
21995 đồng dư với 1 ( mod 31 )
21995 - 1 đồng dư với 0 ( mod 31 )
=>21995 -1 chia hết cho 31
Chứng minh rằng x không chia hết cho 3 thì x2 đồng dư với 1 (mod 3)
Xét : x^2-1 = (x-1).(x+1)
x ko chia hết cho 3 nên x chia 3 dư 1 hoặc 2
Nếu x chia 3 dư 1 => x-1 chia hết cho 3 => x^2-1 chia hết cho 3
Nếu x chia 3 dư 2 => x+1 chia hết cho 3 => x^2-1 chia hết cho 3
Vậy x^2-1 chia hết cho 3 với mọi x ko chia hết cho 3 , x thuộc Z
=> với mọi x ko chia hết cho 3 , x thuộc Z thì x^2 đồng dư vơi 1 (mod 3)
Tk mk nha
Tìm dư của phép chia
3100 cho 13
3100 + 3105 cho 13
Giúp mk nhé: mk cảm ơn nhìu
Mk có bài ví dụ tương tự nek:
3100 cho 7
Giải
36 đồng dư với 1 (mod 7)
(36)16 đồng dư với 1 (mod 7)
32 đồng dư với 2 (mod 7)
(32)2 đồng dư với 22 (mod 7)
34 đồng dư với 4 (mod 7)
Suy ra (36)16 . 34 = 4 (mod 7)
Vậy 3100 chia 7 dư 4
Chứng minh rằng nếu P nguyên tố và a không chia hết cho P thì aP-1 đồng dư với 1( mod P )
cho x chia 4 dư 1
CMR x^2-4n-5 chia hết cho 4 bằng 2 cách
giúp mk nhé m,n
cảm ơn m.n nhìu nhá
Cách 1
Vì x chia 4 dư 1
\(\Rightarrow x^2\) chia 4 dư 1 hay \(x^2=4k+1\)
\(\Rightarrow x^2-4n+5=4k+1-4n+5=4k-4n-4\)
Vì 4k chia hết cho 4 ; 4n chia hết cho 4 ; 4 chia hết cho 4
\(\Rightarrow x^2-4n-5\) chia hết cho 4
Cách 2
Ta có
\(x^2-4n-5=\left(x^2-1\right)-4n-4\)
\(=\left(x+1\right)\left(x-1\right)-4n-4\)
Vì x chia 4 dư 1
=> x- 1 chia hết cho 4
=>\(x^2-4n+5\) chia hết cho 4