cho A=5+ 5 mũ 3+5 mũ 5+ ....+5 mũ 2015.
Tìm số dư của A÷26.
Chứng tỏ A chia hết cho 2017.
Cho A= 2 + 2 mũ 2 + 2 mũ 3 + ......+ 2 mũ 100
B= 5 + 5 mũ 2 + 5 mũ 3 +...... +5 mũ 96
C= 2 mũ 100 - 2 mũ 99 + 2 mũ 98 - 2 mũ 97 + ...+ 2 mũ 2 - 2
a) chứng tỏ rằng A chia hết cho 6 và 30
b) Chứng tỏ rằng B chia hết cho 6 và 31, 26, 126
c) Tinh giá trị của A,B,C
Cho A= 5+5 mũ 2+5 mũ 3...+5 mũ 26+5 mũ 27
a) Tính A
b) Chứng tỏ A chia hết cho 31
giúp mk đi tích cho
Cho S = 5 mũ 62 + 5 mũ 62 + 29 . Tìm số dư của S khi chia cho 26 .
Số tự nhiên a khi chia cho 24 có số dư là 15.
a) chứng tỏ rằng a ko chia hết cho 4
b) chứng tỏ rằng a chia hết cho 3
Chứng tỏ rằng :
A) 5 mũ 2016 + 5 mũ 2015 + 5 mũ 2016 chia hết cho 31
B) 1+7+7 mũ 2 + 7 mũ 3+ .....+7 mũ 701 chia hết cho 8
C) 4 mũ 39 + 4 mũ 40+ 4 mũ 41 chia hết cho 28
1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên
Cho S = 5 + 5 mũ 2 + 5 mũ 3 + ... + 5 mũ 96
a) Chứng minh : S chia hết cho 26
b) Tìm chữ số tận cùng của S
a,Tổng trên có 96 số hạng, nhóm 4 số thành 1 nhóm ta được 24 nhóm
S = 5 + 52 + 53 +.....+ 596
S = (5+52+53+54)+(55+56+57+58)+.....+(593+594+595+596)
S = 5(1+5+52+53)+55(1+5+52+53)+....+593(1+5+52+53)
S = 5.156 + 55.156 +.....+ 593.156
S = 156.(5+55+....+593) chia hết cho 26 (vì 156 chia hết cho 26)
Ta có: 5+55+.....+593 có 24 số hạng có tận cùng là 5
(vì 5 nhân lên lũy thừa bao nhiêu cũng cho 1 số có tận cùng là 5)
=> 5+55+...+593 có tận cùng là (...5) + (...5) +......+ (...5) gồm 24 số
=> 5+55+...+593 có tận cùng là 5.24 = ...0
=> S = 156.(5+55+...+593)
=> S = 156.(...0)
=> S = (...0)
=> Chữ số tận cùng của S là 0
Câu b sai. Làm như sau mới đúng. số tận cùng của S là 5.
b, Có:
S =5+52+53+…+596
5S =5(5+52+53+…+596)
=52+53+54…+597
5S-S =(52+53+54…+597)-( 5+52+53+…+596)
4S =597-5
S =(597-5)/4
Mà 597-5=596.5-5=54.24.5-5=(54)24.5-5=62524.5-5=…0625.5-5=…3125-5=3120
S =…..3120/4
20 chia 4 =5. Vậy tận cùng của S là 5
a) \(A=2+2^2+...+2^{2024}\)
\(2A=2^2+2^3+...+2^{2025}\)
\(2A-A=2^2+2^3+...+2^{2025}-2-2^2-...-2^{2024}\)
\(A=2^{2025}-2\)
b) \(2A+4=2n\)
\(\Rightarrow2\cdot\left(2^{2025}-2\right)+4=2n\)
\(\Rightarrow2^{2026}-4+4=2n\)
\(\Rightarrow2n=2^{2026}\)
\(\Rightarrow n=2^{2026}:2\)
\(\Rightarrow n=2^{2025}\)
c) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2023}+2^{2024}\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{2023}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{2023}\right)\)
d) \(A=2+2^2+2^3+...+2^{2024}\)
\(A=2+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2022}+2^{2023}+2^{2024}\right)\)
\(A=2+2^2\cdot7+2^5\cdot7+...+2^{2022}\cdot7\)
\(A=2+7\cdot\left(2^2+2^5+...+2^{2022}\right)\)
Mà: \(7\cdot\left(2^2+2^5+...+2^{2022}\right)\) ⋮ 7
⇒ A : 7 dư 2
Chứng tỏ rằng :
A) 5 mũ 2016 + 5 mũ 2015 + 5 mũ 2016 chia hết cho 31
B) 1+7+7 mũ 2 + 7 mũ 3+ .....+7 mũ 701 chia hết cho 8
C) 4 mũ 39 + 4 mũ 40+ 4 mũ 41 chia hết cho 28
Làm giúp e nhanh lên nha ! E khẩn cấp lắm ồi
b: \(B=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)⋮8\)
c: \(C=4^{39}\left(1+4+4^2\right)=4^{39}\cdot21=4^{38}\cdot84⋮28\)
giúp mình câu hỏi này với các bạn ơiiiii: a= 7 mũ 2020 mũ 2019 - 3 mũ 2016 mũ 2015 trên 5 chứng tỏ a chia hết cho 2
Bài 1 : Chứng tỏ rằng :
a) 10 mũ 9 + 10 mũ 8 + 10 mũ 7 chia hết cho 555
b) 81 mũ 7 - 27 mũ 9 - 9 mũ 19 chia hết cho 45
Bài 2 : Chứng tỏ rằng :
A = 5 + 5 mũ 5 + 5 mũ 3 + ... +5 mũ 99 + 5 mũ 100 chia hết cho 6
Mấy bạn giúp mk với gấp lắm !
a;
A = 109 + 108 + 107
A = 107.(102 + 10 + 1)
A = 106.2.5.(100 + 10 + 1)
A = 106.2.5.111
A = 106.2.555 ⋮ 555 (đpcm)
b;
B = 817 - 279 - 919
B = 914 - 39.99 - 919
B = 914 - 3.38.99 - 919
B = 914 - 3.94.99 - 919
B = 914 - 3.913 - 919
B = 913.(9 - 3 - 96)
B = 913.(9 - 3 - \(\overline{..1}\))
B = 913.(6 - \(\overline{..1}\))
B = 913.\(\overline{..5}\)
B ⋮ 9; B ⋮ 5
B \(\in\) BC(9; 5) = 9.5 = 45
B ⋮ 45 (đpcm)
Bài 2:
A = 5 + 52 + 53 + ... + 599 + 5100 chứ em?