CMR đa thức:
\(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)^{10}-2\)
chia hết cho đa thức x-1
CMR đa thức \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)-2\)chia hết cho \(x-1\).
Ta có : \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)-2=\left(x-1\right).Q\left(x\right)+r\)(1)
\(\Rightarrow r\) là số dư
Thay x = 1 vào pt (1) ta có : \(\left(1^2+1-1\right)^{10}+\left(1^2-1+1\right)-2=\left(1-1\right).Q\left(1\right)+r\)
\(\Leftrightarrow1+1-2=r\Rightarrow r=0\)
Do phét chia trên có số dư là 0 nên \(\left(x^2+x-1\right)^{10}+\left(x^2-x+1\right)-2\) chia hết cho \(x-1\)
bài 2
f(x) = (x²+x-1)^10 + (x²-x+1)^10 -2
f(1) = 1 + 1 - 2 = 0
=> x = 1 là nghiệm cua f(x)
=> f(x) chia hết cho x-1
Chứng minh đa thức \(f\left(x\right)=9x+\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\) chia hết cho đa thức \(g\left(x\right)=x^2+8x+10\)
Cho 2 đa thức \(P\left(x\right);Q\left(x\right)\) thỏa mãn \(P\left(x^3\right)+x.Q\left(x^3\right)\) chia hết cho \(x^2+x+1\). Chứng minh rằng đa thức \(P\left(x\right)\) chia hết cho đa thức \(x-1\).
P/s: Em xin phép nhờ quý thầy cô giáo cùng các bạn yêu toán giúp đỡ em tham khảo với ạ.
Em cám ơn nhiều ạ!
\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)
\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\)
Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)
\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\) với mọi x nguyên
\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên
Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)
\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức \(f\left(x\right)=x^2+x.g\left(x^3\right)\) không chia hết cho đa thức \(x^2-x+1\)
Lời giải:
Sử dụng bổ đề. Với $f(x)$ có hệ số nguyên thì $f(a)-f(b)\vdots a-b$ với $a,b$ là nguyên khác nhau.
Áp dụng vào bài toán, ta dễ dàng chỉ ra $g(x^3)-g(-1)\vdots x^3+1\vdots x^2-x+1(1)$
Giả sử $f(x)=x^2+xg(x^3)\vdots x^2-x+1$
$\Leftrightarrow g(x^3)+x\vdots x^2-x+1(2)$
$(1);(2)\Rightarrow x+g(-1)\vdots x^2-x+1$ (vô lý)
Do đó ta có đpcm.
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức \(f\left(x\right)=x^2+x.g\left(x^3\right)\) không chia hết cho đa thức: \(x^2-x+1\)
Tìm đa thức \(P\left(x\right)\), biết rằng đa thức \(P\left(x\right)\) chia cho đa thức \(x-2\) có số dư là : 35. Đa thức \(P\left(x\right)\) chia cho đa thức \(x+1\) có số dư là 5. Đa thức \(P\left(x\right)\) chia cho đa thức \(2x^2+5x+2\) có thương là \(x\).
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em tham khảo với ạ! Em cám ơn mọi người nhiều ạ!
Tìm a và b để đa thức \(G\left(x\right)=x^6+ax^2+bx+2\) chia hết cho đa thức \(P\left(x\right)=x^2-x+1\)
\(\dfrac{G\left(x\right)}{P\left(x\right)}\)
\(=\dfrac{x^6-1+ax^2+bx+3}{x^2-x+1}\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)+\dfrac{ax^2-ax+a+\left(b+a\right)x+3-a}{x^2-x+1}\)
\(=A+\dfrac{\left(b+a\right)x+3-a}{x^2-x+1}\)
G(x) chia hêt cho P(x)=0
=>3-a=0 và a+b=0
=>a=3 và b=-3
Tìm số dư của phép chia đa thức:
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+2015\) cho đa thức \(x^2+8x+10\)
Không thực hiện phép tính chia, tìm đa thức dư trong phép chia
\(\left(x^{10}+x^9+x^8+...+x+1\right):\left(x^2-1\right)\)