Bài 2: Cho 2 đa thức:
\(P\left(x\right)=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+a\) và \(Q\left(x\right)=x^2+8x+9\)
Tìm giá trị của a để đa thức P(x) chia hết cho đa thức Q(x).
cho đa thức \(P\left(x\right)=x^3-x\) và \(Q\left(x\right)=x^{81}+x^{49}+x^{25}+x^9+x+1\).
a. tìm số dư trong phép chia Q(x) cho P(x)
b.tìm x để Q(x) chia hết cho P(x)
Tìm a; b sao cho:
b) Đa thức \(\left(x^3-3x+a\right)\)⋮đa thức \(\left(x-1\right)^2\)
c) Đa thức \(\left(x^4+ax^3+b\right)\)⋮đa thức \(\left(x^2-1\right)\)
d) Đa thức \(\left(3x^2+ax+27\right)\)⋮đa thức (x+5) dư 27
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức \(f\left(x\right)=x^2+x.g\left(x^3\right)\) không chia hết cho đa thức \(x^2-x+1\)
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức \(f\left(x\right)=x^2+x.g\left(x^3\right)\) không chia hết cho đa thức: \(x^2-x+1\)
Số dư khi chia đa thức \(f\left(x\right)=x^{2017}+x^{2016}+1\) chia cho đa thức \(g\left(x\right)=x+1\)
Tìm các số a, b để đa thức \(f\left(x\right)=6x^4-7x^3+ax^2+3x+2\) chia hết cho đa thức \(f_2\left(x\right)=x^2-x+b\)
Số dư khi chia đa thức \(f\left(x\right)=x^{2017}+2017x^2+2017x+1\) cho đa thức \(g\left(x\right)=x-1\) là
Tìm a và b để đa thức \(G\left(x\right)=x^6+ax^2+bx+2\) chia hết cho đa thức \(P\left(x\right)=x^2-x+1\)