Theo đề, ta có:
x2017+2017x2+2017x+1=(x-1).T + a (*)
(T là thương, a là số dư)
Thay x=1 (nghiệm của g(x)) vào (*)
=> 4036=a
=> Số dư là 4036
Theo đề, ta có:
x2017+2017x2+2017x+1=(x-1).T + a (*)
(T là thương, a là số dư)
Thay x=1 (nghiệm của g(x)) vào (*)
=> 4036=a
=> Số dư là 4036
Số dư khi chia đa thức \(f\left(x\right)=x^{2017}+x^{2016}+1\) chia cho đa thức \(g\left(x\right)=x+1\)
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức \(f\left(x\right)=x^2+x.g\left(x^3\right)\) không chia hết cho đa thức \(x^2-x+1\)
Cho g(x) là 1 đa thức với hệ số nguyên. CM: Đa thức \(f\left(x\right)=x^2+x.g\left(x^3\right)\) không chia hết cho đa thức: \(x^2-x+1\)
Xác định các hệ số a, b, c sao cho đa thức: \(f\left(x\right)=2x^4+ax^2+bx+c\) chia hết cho đa thức x-2 và khi chia cho đa thức: \(x^2-1\) thì có dư là x
Đa thức f\(\left(x\right)\) chia cho \(x+1\) thì dư 4, chia cho \(x^2+1\) thì dư \(2x+3\).
Tìm dư khi f\(\left(x\right)\) chia cho \(\left(x+1\right)\left(x^2+1\right)\)
Bài 1 : Tìm GTLN và GTNN của biểu thức \(A=\frac{27-12x}{x^2+9}\)
Bài 2 : Cho 2 số chính phương liên tiếp. Cmr : Tổng của 2 số đó + với tích của chúng = 1 số chính phương lẻ
Bài 3 : Cho đa thức \(F\left(x\right)=x^3+\text{ax}^2+bx+c\) (Với a, b, c ∈ R ). Biết đa thức F( x ) chia cho đa thức x + 1 dư - 4, đa thức F( x ) chia cho đa thức x - 2 dư 5
Hãy tính giá trị của \(A=\left(a^{2019}+b^{2019}\right)\left(b^{2020}-c^{2020}\right)\left(c^{2021}+a^{2021}\right)\)
Tìm x để cho:
a)Đa thức \(f\left(x\right)=10x^2-7x+m⋮2x-3\)
b)Đa thức \(g\left(x\right)=2x^2+mx+1:3\) dư 4
c)Đa thức \(h\left(x\right)=mx^5+5x^4-9⋮x-1\)
Tìm số dư của phép chia đa thức:
\(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+2015\) cho đa thức \(x^2+8x+10\)
Tìm a và b để đa thức \(G\left(x\right)=x^6+ax^2+bx+2\) chia hết cho đa thức \(P\left(x\right)=x^2-x+1\)