Phân tích đa thức thành nhân tử
x4 + x3 + 3x2 + 2x +3
x5 - xy4 + x4y - y5
Phân tích các đa thức sau thành nhân tử
a,x4+2x3+3x2+2x+1
b,x4-4x3+2x2+4x+1
c,x4+x3+2x2+2x+4
PHÂN TÍCH CÁC ĐA THỨC SAU THÀNH NHÂN TỬ BẰNG PHƯƠNG PHÁP NHÓM NHIỀU HẠNG TỬ :
a) x2 -2x -4y2-4y
b) x4 + 2x3 - 4x -4
c) x3 + 2x2y -x -2y
d) 3x2 -3y2 -2(x-y)2
e) x3 -4x2 -9x +36
f) x2 -y2 -2x -2y
a: Ta có: \(x^2-4y^2-2x-4y\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
c: Ta có: \(x^3+2x^2y-x-2y\)
\(=x^2\left(x+2y\right)-\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)
d: Ta có: \(3x^2-3y^2-2\cdot\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\cdot\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
e: Ta có: \(x^3-4x^2-9x+36\)
\(=x^2\left(x-4\right)-9\left(x-4\right)\)
\(=\left(x-4\right)\left(x-3\right)\left(x+3\right)\)
f: Ta có: \(x^2-y^2-2x-2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
1 a. phân tích đa thức -x3 + 3x2 - 3x + 1 thành nhân tử
b. phân tích đa thức 1 - 3x + 3x2 - x3 thành nhân tử
1a) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
b) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
\(a,=-\left(x-1\right)^3\left[=\left(1-x\right)^3\right]\\ b,=\left(1-x\right)^3\)
a. \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
b. \(=\left(1-x\right)^3\)
Bài 1 : phân tích đa thức thành nhân tử.
3x2 + 2x – 1
x3 + 6x2 + 11x + 6
x4 + 2x2 – 3
ab + ac +b2 + 2bc + c2
a3 – b3 + c3 + 3abc
Bài 2: Phân tích các đa thức sau thành nhân tử
a) x2 – 9 b) 4x2 -1 c) x4 - 16
d) x2 – 4x + 4 e) x3 – 8 f) x3 + 3x2 + 3x + 1
a) x² - 9
= x² - 3²
= (x - 3)(x + 3)
b) 4x² - 1
= (2x)² - 1²
= (2x - 1)(2x + 1)
c) x⁴ - 16
= (x²)² - 4²
= (x² - 4)(x² + 4)
= (x² - 2²)(x² + 4)
= (x - 2)(x + 2)(x + 4)
d) x² - 4x + 4
= x² - 2.x.2 + 2²
= (x - 2)²
e) x³ - 8
= x³ - 2³
= (x - 2)(x² + 2x + 4)
f) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
Phân tích các đa thức sau thành nhân tử:
a) 3x - 3y + x 2 - y 2 ; b) x 2 -4 x 2 y 2 + y 2 + 2xy
c) x 6 - x 4 + 2 x 3 + 2 x 2 ; d) x 3 - 3x 2 +3x - 1 - y 3 .
a) (x - y)(x + y + 3). b) (x + y - 2xy)(2 + y + 2xy).
c) x 2 (x + l)( x 3 - x 2 + 2). d) (x – 1 - y)[ ( x - 1 ) 2 + ( x - 1 ) y + y 2 ].
Phân tích đa thức thành nhân tử: x 3 - 3 x 2 - 4 x + 12
x 3 - 3 x 2 - 4 x + 12 = x 3 - 3 x 2 - 4 x - 12 = x 2 x - 3 - 4 x - 3 = x - 3 x 2 - 4 = x - 3 x + 2 x - 2
phân tích đa thức -x3 + 3x2 - 3x + 1 thành nhân tử
\(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
Phân tích đa thức thành nhân tử :
x3 -3x2 +3x -1 -y3
x3+3x2 +3x +1 -y3
Bạn phải vt thêm dấu mũ vào mới giải đc chứ!! Để thế kia ai mà giải đc
\(x^3-3x^2+3x-1-y^3\\ =\left(x-1\right)^3-y^3=\left(x-1-y\right)\left[\left(x-1\right)^2+y\left(x-1\right)+y^2\right]\\ =\left(x-y-1\right)\left(x^2-2x+1+xy-y+y^2\right)\)
\(x^3+3x^2+3x+1-y^3\\ =\left(x+1\right)^3-y^3=\left(x+1-y\right)\left[\left(x+1\right)^2+y\left(x+1\right)+y^2\right]\\ =\left(x-y+1\right)\left(x^2+2x+1+xy+y+y^2\right)\)
a) x3-3x2+3x-1-y3 =(x-1)3 - y3
= (x-1)3 - 3.(x-1)2.y + 3.(x-1). y2 - y