Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trúc Giang
Xem chi tiết
Jeong Soo In
27 tháng 3 2020 lúc 8:45
Khách vãng lai đã xóa
Trúc Giang
27 tháng 3 2020 lúc 8:52

,@HISINOMA KINIMADO biết làm ko ?

Khách vãng lai đã xóa
Cô Bé Yêu Đời
Xem chi tiết
lê phúc
3 tháng 9 2019 lúc 19:53

lolang

Mai Anh Tào Nguyễn
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
26 tháng 6 2019 lúc 17:31
Đỗ Huỳnh Nhân Huyền
Xem chi tiết
Minh Triều
20 tháng 8 2015 lúc 14:40

\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3C-C=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^{99}}\)

\(\Rightarrow2C=1-\frac{1}{3^{99}}\)

\(\Rightarrow C=\frac{1-\frac{1}{3^{99}}}{2}

Nguyễn Vũ Trường Giang
Xem chi tiết
Nguyễn Ngọc Anh Minh
27 tháng 8 2016 lúc 15:13

\(3C=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{98}}\)

\(2C=3C-C=1-\frac{1}{3^{99}}\Rightarrow C=\left(1-\frac{1}{3^{99}}\right):2=\frac{1}{2}-\frac{1}{2.3^{99}}< \frac{1}{2}\)

Trúc Giang
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 4 2020 lúc 11:05

\(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(3C=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow C+3C=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow4C< 1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}=D\)

Xét \(D=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

\(\frac{D}{3}=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)

\(\Rightarrow D+\frac{D}{3}=1-\frac{1}{3^{100}}< 1\Rightarrow\frac{4D}{3}< 1\Rightarrow D< \frac{3}{4}\)

\(\Rightarrow4C< D< \frac{3}{4}\Rightarrow C< \frac{3}{16}\)

Khách vãng lai đã xóa
Alayna
Xem chi tiết
Nguyễn Đình Dũng
24 tháng 10 2016 lúc 22:25

\(C=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

=> \(3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

=> \(2C=1-\frac{1}{3^{99}}\)

=> \(C=\frac{1-\frac{1}{3^{99}}}{2}\)

\(1-\frac{1}{3^{99}}< 1\Rightarrow\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)

moi dai ca
24 tháng 10 2016 lúc 21:55

ngu vậy dat S roi tinh

 

moi dai ca
24 tháng 10 2016 lúc 21:56

oaoa

FFPUBGAOVCFLOL
Xem chi tiết
Agatsuma Zenitsu
4 tháng 2 2020 lúc 15:26

\(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow3C=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^2}+...+\frac{99}{3^{89}}-\frac{100}{3^{99}}\)

\(\Rightarrow4C=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow4C< 1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\left(1\right)\)

Đặt: \(B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

\(\Rightarrow3B=2+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

\(4B=B+3B=3-\frac{1}{3^{99}}< 3\)

\(\Rightarrow B< \frac{3}{4}\left(2\right)\)

Từ: \(\left(1\right)\left(2\right)\Rightarrow4C< B< \frac{3}{4}\)

\(\Rightarrow C< \frac{3}{16}\left(đpcm\right)\)

(Đánh nhanh quá sai chỗ nào thông cảm nha :))

Khách vãng lai đã xóa
FFPUBGAOVCFLOL
Xem chi tiết