Cho biểu thức \(C=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
Chứng minh: \(C< \frac{3}{16}\)
Chứng minh rằng: \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+......................+\frac{99}{100!}< 1\)
Chứng minh: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...................+\frac{100}{3^{100}}< \frac{3}{4}\)
Chứng minh: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...................+\frac{100}{3^{100}}< \frac{3}{4}\)
cho biểu thức C = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+......+\frac{100}{3^{100}}\)
Chứng minh C < \(\frac{3}{4}\)
Chứng minh rằng: \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+....................+\frac{100}{3^{100}}< \frac{3}{4}\)
bài 1:C=\(\frac{1}{3}+\frac{2}{3^2}+.......+\frac{100}{3^{100}}\)
chứng minh rằng C<\(\frac{3}{4}\)
bài 2
CMR:
a) \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}< 1\)
b) \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\)
Cho \(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)
Chứng minh A < 2