Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jaki Natsumi
Xem chi tiết
Nguyễn Bích Hằng
Xem chi tiết
gaarakazekage
Xem chi tiết
nguyen minh huyen
Xem chi tiết
Tô Cường
Xem chi tiết
Nguyễn Mã Sinh
Xem chi tiết
uzumaki naruto
15 tháng 7 2017 lúc 9:20

a) => 4x + 2/3 = 0 hoặc 2/3x - 1 =0 

4x= -2/3 hoặc 2/3x= 1

x = -2/3 . 1/4 hoặc x = 1.3/2

x = -1/6 hoặc x = 3/2 

b) x+2 / x -1 = 5/2 

=> 2(x+2) = 5(x-1)

2x + 4 = 5x - 5

5x - 2x= 4+5

3x = 9

=> x= 3

Nguyễn Linh Ngọc
15 tháng 7 2017 lúc 9:19

a) (4x+\(\frac{2}{3}\)) . ( \(\frac{2}{3}\)x-1)=0

\(\Rightarrow\)\(\orbr{\begin{cases}4x+\frac{2}{3}=0\\\frac{2}{3}x-1=0\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=\\x=\end{cases}}\)........

Tới đây bn tự giải nha

Nguyễn Mã Sinh
15 tháng 7 2017 lúc 9:32

còn câu c nữa các bạn ơi ,giúp mình với

beelzebub
Xem chi tiết
Nguyễn Thái Quân
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2019 lúc 11:42

Nhìn 2 vế của hàm số thì có vẻ ta cần phân tích biểu thức vế trái về dạng \(\left[f\left(x\right).u\left(x\right)\right]'=f\left(x\right).u'\left(x\right)+u\left(x\right).f'\left(x\right)\), ta cần tìm thằng \(u\left(x\right)\) này

Biến đổi 1 chút xíu: \(\frac{\left[f\left(x\right).u\left(x\right)\right]'}{u\left(x\right)}=\frac{u'\left(x\right)}{u\left(x\right)}f\left(x\right)+f'\left(x\right)\) (1) hay vào bài toán:

\(\left(\frac{x+2}{x+1}\right)f\left(x\right)+f'\left(x\right)=\frac{e^x}{x+1}\) (2)

Nhìn (1) và (2) thì rõ ràng ta thấy \(\frac{u'\left(x\right)}{u\left(x\right)}=\frac{x+2}{x+1}=1+\frac{1}{x+1}\)

Lấy nguyên hàm 2 vế:

\(ln\left(u\left(x\right)\right)=\int\left(1+\frac{1}{x+1}\right)dx=x+ln\left(x+1\right)\)

\(\Rightarrow u\left(x\right)=e^{x+ln\left(x+1\right)}=e^x.e^{ln\left(x+1\right)}=e^x.\left(x+1\right)\)

Vậy ta đã tìm xong hàm \(u\left(x\right)\)

Vế trái bây giờ cần biến đổi về dạng:

\(\left[f\left(x\right).e^x\left(x+1\right)\right]'=e^x\left(x+2\right).f\left(x\right)+f'\left(x\right).e^x\left(x+1\right).f'\left(x\right)\)

Để tạo thành điều này, ta cần nhân \(e^x\) vào 2 vế của biểu thức ban đầu:

\(e^x\left(x+2\right)f\left(x\right)+e^x\left(x+1\right)f'\left(x\right)=e^{2x}\)

\(\Leftrightarrow\left[f\left(x\right).e^x.\left(x+1\right)\right]'=e^{2x}\)

Lấy nguyên hàm 2 vế:

\(f\left(x\right).e^x\left(x+1\right)=\int e^{2x}dx=\frac{1}{2}e^{2x}+C\)

Do \(f\left(0\right)=\frac{1}{2}\Rightarrow f\left(0\right).e^0=\frac{1}{2}e^0+C\Rightarrow C=0\)

Vậy \(f\left(x\right).e^x\left(x+1\right)=\frac{1}{2}e^{2x}\Rightarrow f\left(x\right)=\frac{1}{2}\frac{e^{2x}}{e^x\left(x+1\right)}=\frac{e^x}{2\left(x+1\right)}\)

\(\Rightarrow f\left(2\right)=\frac{e^2}{2\left(2+1\right)}=\frac{e^2}{6}\)

Lăm A Tám
Xem chi tiết
lê quỳnh anh
Xem chi tiết
Chippy Linh
20 tháng 12 2016 lúc 17:33

kó thế