Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bye
Xem chi tiết
Hoàng Phúc
15 tháng 2 2016 lúc 20:44

=>4A=4+42+43+44+45+...+4100

=>4A-A=(4+42+43+44+45+..+4100)-(1+4+42+43+44+...+499)

=>3A=4100-1=>A=(4100-1)/3

ta có: B=4100

mà 4100-1<4100=>A<B

đề sai:A/3<B ms đúng

Tra
Xem chi tiết
Le Thi Khanh Huyen
9 tháng 4 2015 lúc 22:06

a) Ta có:

(n-1)/n < n/(n+1)

vì (n-1).(n+1)=n2-1 < n2

=>

1/2 < 2/3

3/4 < 4/5

....

99/100 < 100/101

Vậy A < B

b). Ta lại có:

A.B = 1/2 . 2/3 . 3/4 . 4/5 .... . 99/100 . 100/101 = 1/100

Mà A<B => A.A<A.B=1/100

=> A< 1/100

=> A < 1/10<1

Hải
Xem chi tiết
Tran Le Khanh Linh
28 tháng 2 2020 lúc 19:31

\(A=3+3^2+3^3+...+3^{100}\)

\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3\)

\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)

\(\Leftrightarrow A< B\)

Khách vãng lai đã xóa
Nguyễn Trọng Anh Văn
28 tháng 2 2020 lúc 19:31

a. tính A = 3+3^2+3^3+3^4+.....+3^100

3A=3^2+3^3+3^4+3^5+....+3^100

3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100

mà B=3^100-1 => A<B

Khách vãng lai đã xóa
Tran Le Khanh Linh
28 tháng 2 2020 lúc 19:34

\(A=1+4+4^2+...+4^{99}\)

\(\Leftrightarrow4A=4+4^2+4^3+...+4^{100}\)

\(\Leftrightarrow3A=4^{100}-1\)

\(\Leftrightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\)

hay A<B (đpcm)

Khách vãng lai đã xóa
Nguyễn Yuki
Xem chi tiết
Nguyễn Đình Dũng
23 tháng 10 2016 lúc 21:20

Bài 1:

A = 1 + 3 + 32 + ... + 3100

=> 3A = 3 + 32 + ... + 3101

=> 2A = 3101 - 1

=> A = \(\frac{3^{101}-1}{2}\)

B = 1 + 42 + 44 + ... + 4100

=> 8B = 42 + 44 + ... + 4102

=> 7B = 4102 - 1

=> B = \(\frac{4^{102}-1}{7}\)

Bài 2:

a) S1 = 22 + 42 + ... + 202

=> S1 = 22(1+22+...+102)

=> S1 = 22.385

=> S1 = 1540

b) S2 = 1002 + 2002 + ... + 10002

=> S2 = 1002(1+22+...+102)

=> S2 = 1002.385

=> S2 = 3850000

 

Nguyễn Ngọc Diệp
Xem chi tiết
Phạm Ngọc Linh
Xem chi tiết
Lương Thị Vân Anh
14 tháng 5 2023 lúc 19:45

a) Ta có A = 1 + 4 + 42 + 43 + ... + 449

4A = 4 + 42 + 4+ 44 + ... + 450

4A - A = ( 4 + 42 + 4+ 44 + ... + 450 ) - ( 1 + 4 + 42 + 43 + ... + 449 )

3A = 450 - 1

A = \(\dfrac{4^{50}-1}{3}\) 

Vì A = \(\dfrac{4^{50}-1}{3}\) < \(\dfrac{4^{100}}{3}\) = \(\dfrac{B}{3}\) nên A < \(\dfrac{B}{3}\) 

b) Ta có A = 1 + 4 + 42 + 43 + ... + 449 

                 = 1 + 4 + ( 42 + 43 + 44 ) + ( 45 + 46 + 47 ) + ... + ( 447 + 448 + 449 )

                 = 5 + 42( 1 + 4 + 42 ) + 45( 1 + 4 + 42 ) + ... + 447( 1 + 4 + 42 )

                 = 5 + 42 . 16 + 45 . 16 + ... + 447 . 16

                 = 5 + 21( 42 + 45 + ... + 447 )

Vì [ 21( 42 + 45 + ... + 447 )] ⋮ 21 nên A = 5 + 21( 42 + 45 + ... + 447 ) chia 21 dư 5

Vậy A chia 21 dư 5

 
Nguyễn Bảo Khanh
14 tháng 5 2023 lúc 19:57

đây là toán lớp 6 ư. Ròi xong tới công chuyện với me òi năm sau lên lớp 6

 

bincorin
Xem chi tiết
Akai Haruma
25 tháng 10 lúc 22:54

Lời giải:

$A=1+4+4^2+4^3+...+4^{99}$

$4A=4+4^2+4^3+4^4+....+4^{100}$

$\Rightarrow 4A-A=4^{100}-1$

$\Rightarrow 3A=4^{100}-1=B-1< B$
$\Rightarrow A< \frac{B}{3}$

Nguyễn Thành Hiệp
Xem chi tiết
Trần Văn Hiệp
8 tháng 3 2017 lúc 21:19

4A=4+4^2+4^3+4^4+....+4^100

4A-A=4^100-1

=>3A=4^100-1 mà 4^100-1<4^100

=>3A<B  =>A<B/3(đpcm) 

Trần Hoàng Ngân
12 tháng 7 2017 lúc 20:17

Ta có: A = 1+4+4^2+4^3+...+4^99  
=> 4A = 4.(1+4+4^2+4^3+...+4^99)
=> 4A = 4+4^2+4^3+...+4^99+4^100 
=> 4A - A = (4+4^2+4^3+...+4^99+4^100) - (1+4+4^2+4^3+...+4^99) 
=> 3A = 4^100 - 1 
=> A = 4^100-1/3 < 4^100/3 mà B = 4^100 
=> A < 4^100/3 
Bài toán đã được chứng minh.

 

kudo shinichi
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 10 2020 lúc 12:38

1.

Ta có: \(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\)

\(\Rightarrow VT\le\frac{a}{a+bc\left(b^2+c^2\right)}+\frac{b}{b+ca\left(c^2+a^2\right)}+\frac{c}{c+ab\left(a^2+b^2\right)}\)

\(\Rightarrow VT\le\frac{a^2}{a^2+abc\left(b^2+c^2\right)}+\frac{b^2}{b^2+abc\left(a^2+c^2\right)}+\frac{c^2}{c^2+abc\left(a^2+b^2\right)}\)

\(\Rightarrow VT\le\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Khách vãng lai đã xóa