4x + 30 \(⋮\)x + 6
4x+x=20-30:6
\(\Leftrightarrow5x=20-5\\ \Leftrightarrow5x=15\\ \Leftrightarrow x=3\)
8 Tìm x biết : a) 5x(4x-5)-4x(5x-6)-30 ; 2x(6-3x)+3x(2x-5)=12
a: \(=20x^2-25x-20x^2+24x-30=-x-30\)
b: \(\Leftrightarrow12x-6x^2+6x^2-15x=12\)
=>-3x=12
hay x=-4
8 Tìm x biết : a) 5x(4x-5)-4x(5x-6)-30 ; 2x(6-3x)+3x(2x-5)=12
a )
\(5x\left(4x-5\right)-4x\left(5x-6\right)=30\)
\(\Rightarrow20x^2-25x-20x^2+24x=30\)
\(\Rightarrow-x=30\)
\(\Rightarrow x=-30\)
Vậy ...
b )
\(2x\left(6-3x\right)+3x\left(2x-5\right)=12\)
\(\Rightarrow12x-6x^2+6x^2-15x=12\)
\(\Rightarrow-3x=12\)
\(\Rightarrow x=-4\)
Vậy ...
a) \(5x\left(4x-5\right)-4x\left(5x-6\right)-30\)
\(\Rightarrow20x^2-25x-20x^2+24x=30\)
\(\Rightarrow-1x=30\)
\(\Rightarrow x=-30\)
Vậy x = -30
b) \(2x\left(6-3x\right)+3x\left(2x-5\right)=12\)
\(\Rightarrow12x-6x^2+6x^2-15x=12\)
\(\Rightarrow-3x=12\)
\(\Rightarrow x=-4\)
Vậy x = -4
cảm ơn các bạn nếu đc các bạn có thể trả lời hết số câu hỏi tớ vừa hỏi có đc ko ạ
giải bất phương trình:
a) -3x2 + 4x - 4 <0 b) (2x + 1) ( x2 +x - 30) ≥ 0
c) 4x + 10x + 6
a) −30 − (x + 5) = −18 b) (x − 1).(4x + 16) = 0 c) x − (6 − 3x) = (−2022)1 .
b: \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Tìm X a) 3x . ( 12x-4) - 9x . (4x-3)= 30 b) 6 . ( 2x+1) - 5 . ( X-2) = 10
a) \(3x\cdot\left(12x-4\right)-9x\cdot\left(4x-3\right)=30\)
\(\Leftrightarrow36x^2-12x-36x^2+27x=30\)
\(\Leftrightarrow15x=30\)
\(\Leftrightarrow x=\dfrac{30}{15}\)
\(\Leftrightarrow x=2\)
b) \(\left(2x+1\right)-5\left(x-2\right)=10\)
\(\Leftrightarrow2x+1-5x+10=10\)
\(\Leftrightarrow-3x+11=10\)
\(\Leftrightarrow-3x=10-11\)
\(\Leftrightarrow-3x=-1\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
Tìm x biết:
1)3/4x-1/4=2(x-3)+1/4x
2)30%.x-x+5/6=1/3
3)(2.x-1).(3.x+9)=0
giải bất phương trình:
a) -3x2 + 4x - 4 <0 b) (2x + 1) ( x2 +x - 30) ≥ 0
c) \(\dfrac{4x^2+10x+6}{16x^2+40x+25}\le0\) d) I3x+5I < 2 -x
\(3x^2-2x-2=\dfrac{6}{\sqrt{30}}\sqrt{x^3+3x^2+4x+2}\)
ĐKXĐ: \(x\ge-1\)
\(3x^2-2x-2=\dfrac{6}{\sqrt{30}}\sqrt{\left(x+1\right)\left(x^2+2x+2\right)}\)
\(\Leftrightarrow3\left(x^2+2x+2\right)-8\left(x+1\right)=\dfrac{6}{\sqrt{30}}\sqrt{\left(x+1\right)\left(x^2+2x+2\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x+2}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow3a^2-8b^2-\dfrac{6}{\sqrt{30}}ab=0\)
\(\Leftrightarrow\left(3a-\sqrt{30}b\right)\left(a+\dfrac{4\sqrt{30}}{15}b\right)=0\)
\(\Leftrightarrow3a=\sqrt{30}b\)
\(\Leftrightarrow3\sqrt{x^2+2x+2}=\sqrt{30\left(x+1\right)}\)
\(\Leftrightarrow9\left(x^2+2x+2\right)=30\left(x+1\right)\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=2\end{matrix}\right.\)