Cho các số a,b lớn hơn 0 thỏa mãn: a2014 + b2014 = a2015 + b2015 =a2016 + b2016
Tính giá trị biểu thức M=29a2014 + 8b2014
Cho a,b là các số nguyên khác 0,thỏa mãn a10+b10=a11+b11=a12+b12.Tính a2015+b2015.
Giúp mình với nha!dùng phương pháp quy nạp nhé
Cho dãy số a1;a2;a3;...;a2016
Cho a2^2=a1.a3
a3^2=a2.a4
...
a2015^2=a2014.a2016
CMR:
\(\left(\frac{a1+a2+a3+...+a2015}{a2+a3+a4+...+a2016}\right)^{2016}=\frac{a1}{a2016}\)
Cho các số tự nhiên a,b,c thoả mãn: a2+b2+c2=ab+bc+ca và a+b+c=3.Tính M= a2016 +b2015 +c2020
Ta có:
\(a^2+b^2+c^2=ab+bc+ca\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\\ \Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow\left(a-b\right)^2=\left(b-c\right)^2=\left(c-a\right)^2=0\\ \Leftrightarrow a=b=c\)
Lại có: \(a+b+c=3\Rightarrow a=b=c=1\)
\(\Rightarrow M=1^{2016}+1^{2015}+1^{2020}=1+1+1=3\)
cho 2017 số nguyên a a1,a2,a3,..,a2017 có tổng bằng 0 và thỏa mãn a1+a2=a3+a4=a4+a5=..=a2015+a2016=a2017+a1=1 .tìm a1,a2,a2017
TK MÌNH ĐI MỌI NGƯỜI MÌNH BỊ ÂM NÈ!
AI TK MÌNH MÌNH TK LẠI CHO!
Cho các số thực a, b thỏa mãn 0 < a < 1 < b ; a b > 1 . Giá trị lớn nhất của biểu thức P = log a a b + 4 1 - log a b log a b a b bằng
A. 3.
B. -4
C. 4.
D. 2
1. Cho a, b, c, d thỏa mãn: abcd=1.
Tính gía trị biểu thức:
M= \(\dfrac{a}{abc+ab+a+1}+\dfrac{b}{bcd+bc+b+1}+\dfrac{c}{cda+cd+1}+\dfrac{d}{dab+da+d+1}\)
2. Cho các số a, b, c, d thỏa mãn: 0 ≤a, b, c, d ≤1.
Tìm giá trị lớn nhất của biểu thức:
N\(=\dfrac{a}{bcd+1}+\dfrac{b}{cda+1}+\dfrac{c}{dab+1}+\dfrac{d}{abc+1}\)
3. Cho tam giác ABC nhọn có các đường cao AM, BN, CP cắt nhau tại H.
a) Chứng minh: \(AB.BP+AC.CN=BC^2\)
b) Cho B, C cố định A thay đổi. Tìm vị trí điểm A để: MH,MA đạt max ?
c) Gọi S,S1,S2,S3 lần luợt là diện tích các tam giác ABC, APN, BMP, CMN.
Chứng minh: \(S_1.S_2.S_3\) ≤ \(\dfrac{1}{64}S_3\)
Bài 1: Ta có:
\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)
\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)
$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$
Bài 2:
Vì $a,b,c,d\in [0;1]$ nên
\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)
Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$
Tương tự:
$c+d\leq cd+1$
$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$
Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$
$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$
$=3-\frac{2abcd}{abcd+1}\leq 3$
Vậy $N_{\max}=3$
3.
Hình vẽ:
Lời giải:
a) △AMC và △BNC có: \(\widehat{AMC}=\widehat{BNC}=90^0;\widehat{ACB}\) là góc chung.
\(\Rightarrow\)△AMC∼△BNC (g-g).
\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CM}{CN}\Rightarrow AC.CN=BC.CM\left(1\right)\)
b) △AMB và △CPB có: \(\widehat{AMB}=\widehat{CPB}=90^0;\widehat{ABC}\) là góc chung.
\(\Rightarrow\)△AMB∼△CPB (g-g)
\(\Rightarrow\dfrac{AB}{CB}=\dfrac{BM}{BP}\Rightarrow AB.BP=BC.BM\left(2\right)\)
Từ (1) và (2) suy ra:
\(AC.CN+AB.BP=BC.CM+BC.BM=BC.\left(CM+BM\right)=BC.BC=BC^2\left(đpcm\right)\)b) Gọi \(M_0\) là trung điểm BC, giả sử \(AB< AC\).
\(\widehat{HBM}=90^0-\widehat{BHM}=90^0-\widehat{AHN}=\widehat{CAM}\)
△HBM và △CAM có: \(\widehat{HBM}=\widehat{CAM};\widehat{HMB}=\widehat{CMA}=90^0\)
\(\Rightarrow\)△HBM∼△CAM (g-g)
\(\Rightarrow\dfrac{MH}{CM}=\dfrac{BM}{MA}\Rightarrow MH.MA=BM.CM\)
Ta có: \(BM.CM=\left(BM_0-MM_0\right)\left(CM_0+MM_0\right)=\left(BM_0-MM_0\right)\left(BM_0+MM_0\right)=BM_0^2-MM_0^2\le BM_0^2=\dfrac{BC^2}{4}\)
\(\Rightarrow MH.MA\le\dfrac{BC^2}{4}\).
Vì \(BC\) không đổi nên: \(max\left(MH.MA\right)=\dfrac{BC^2}{4}\), đạt được khi △ABC cân tại A hay A nằm trên đường trung trực của BC.
c) Sửa đề: \(S_1.S_2.S_3\le\dfrac{1}{64}.S^3\)
△AMC∼△BNC \(\Rightarrow\dfrac{AC}{BC}=\dfrac{MC}{NC}\Rightarrow\dfrac{AC}{MC}=\dfrac{BC}{NC}\)
△ABC và △MNC có: \(\dfrac{AC}{MC}=\dfrac{BC}{NC};\widehat{ACB}\) là góc chung.
\(\Rightarrow\)△ABC∼△MNC (c-g-c)
\(\Rightarrow\dfrac{S_{MNC}}{S_{ABC}}=\dfrac{S_1}{S}=\dfrac{MC}{AC}.\dfrac{NC}{BC}\left(1\right)\)
Tương tự:
△ABC∼△MBP \(\Rightarrow\dfrac{S_{MBP}}{S_{ABC}}=\dfrac{S_2}{S}=\dfrac{MB}{AB}.\dfrac{BP}{BC}\left(2\right)\)
△ABC∼△ANP \(\Rightarrow\dfrac{S_{ANP}}{S_{ABC}}=\dfrac{S_3}{S}=\dfrac{AN}{AB}.\dfrac{AP}{AC}\left(3\right)\)
Từ (1), (2), (3) suy ra:
\(\dfrac{S_1}{S}.\dfrac{S_2}{S}.\dfrac{S_3}{S}=\left(\dfrac{MC}{AC}.\dfrac{NC}{BC}\right).\left(\dfrac{MB}{AB}.\dfrac{BP}{BC}\right).\left(\dfrac{AN}{AB}.\dfrac{AP}{AC}\right)\)
\(\Rightarrow\dfrac{S_1}{S}.\dfrac{S_2}{S}.\dfrac{S_3}{S}=\left(\dfrac{MC.MB}{AC.AB}\right).\left(\dfrac{BP.AP}{AC.BC}\right).\left(\dfrac{AN.CN}{AB.BC}\right)\) (*)
Áp dụng câu b) ta có:
\(\left\{{}\begin{matrix}BM.CM\le\dfrac{1}{4}BC^2\\AP.BP\le\dfrac{1}{4}AB^2\\AN.CN\le\dfrac{1}{4}AC^2\end{matrix}\right.\)
Từ (*) suy ra:
\(\dfrac{S_1}{S}.\dfrac{S_2}{S}.\dfrac{S_3}{S}\le\left(\dfrac{\dfrac{1}{4}BC^2}{AC.AB}\right).\left(\dfrac{\dfrac{1}{4}AC^2}{AC.BC}\right).\left(\dfrac{\dfrac{1}{4}AB^2}{AB.BC}\right)=\dfrac{1}{64}\)
\(\Rightarrow S_1.S_2.S_3\le\dfrac{1}{64}.S^3\)
Dấu "=" xảy ra khi △ABC đều.
Cho biểu thức K = ab + 4ac – 4bc, với a, b, c là các số thực không âm thỏa mãn: a + b + 2c = 1
1, Chứng minh K lớn hơn hoặc bằng – 1/2
2, Tìm giá trị lớn nhất của biểu thức K
1
Áp dụng BĐT Cauchy cho 2 số dương:
4ac=2.b.2c≤2(b+2c2)2≤2(a+b+2c2)2=2.(12)2=12
⇒−4bc≥−12
⇒K=ab+4ac−4bc≥−4bc≥−12
Cho 2015 số nguyên a1, a2,..., a2015. b1,b2,...,b2015 là cách sắp xếp theo thứ tự khác của các số a1, a2,..., a2015.
CMR: P = (a1-b1).(a2-b2)...(a2015-b2015) là 1 số nguyên chẵn
Cho 2017 số nguyên a1;a2;....;a2016;a2017 có tổng bằng 0 thỏa mãn điều kiện: a1+a2=a3+a4=a5+a6=....=a2015+a2016=a2017+a1=1. Tìm a1;a2;a2017.
Với các số thực a,b lớn hơn 1 thỏa mãn 4 a 2 + 9 b 2 = 13 a b . Giá trị biểu thức P = 2 + log 2 a + log 3 b log 25 2 a + 3 b bằng
A. P=1
B. P=2
C. P= 1 2
D. P=4