(y-x-1)(y-x+1)
cho x/y+z+1 = y/z+1+x = z/1+x+y = 1/x+y+z. CMR biểu thức sau có giá trị nguyên: A = x+y/z+1 = y+z/1+x = z+1/x+y = 1+x/y+z
GIẢI HỆ PHƯƠNG TRÌNH:(đặt ẩn phụ)
a) 1/x -1/y-2 =-1
4/x + 3/y-2 =5
b)2/x +5/(x+y) =2
3/x +1/(x+y) =17/10
c) 2/(x-1) +1 /(y+1) =7
5/(x-1) - 2/(y-1) =4
d) 2/ (căn x-1) -1/ (căn y-1) =1
1/ (căn x-1) +1 / (căn y-1) =2
\(a.\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}-2=-1\\\dfrac{4}{x}+\dfrac{3}{y}-2=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a-b-2=-1\\4a+3b-2=5\end{matrix}\right.\) (với \(\dfrac{1}{x}=a-\dfrac{1}{y}=b\))
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{10}{7}\\b=\dfrac{3}{7}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{10}{7}\Rightarrow x=\dfrac{7}{10}\\\dfrac{1}{y}=\dfrac{3}{7}\Rightarrow y=\dfrac{7}{3}\end{matrix}\right.\)
\(b.\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{5}{\left(x+y\right)}=2\\\dfrac{3}{x}+\dfrac{1}{\left(x+y\right)}=\dfrac{17}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2a+5b=2\\3a+b=\dfrac{17}{10}\end{matrix}\right.\) (với \(\dfrac{1}{x}=a-\dfrac{1}{x+y}=b\))
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{1}{5}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{2}\Rightarrow x=2\\\dfrac{1}{x+y}=\dfrac{1}{5}\Rightarrow y=3\end{matrix}\right.\)
\(c.\left\{{}\begin{matrix}\dfrac{2}{x-1}+\dfrac{1}{y+1}=7\\\dfrac{5}{x-1}-\dfrac{2}{y+1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a+b=7\\5a-2b=4\end{matrix}\right.\) (với \(\dfrac{1}{x-1}=a-\dfrac{1}{y+1}=b\))
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x-1}=2\Rightarrow x=\dfrac{3}{2}\\\dfrac{1}{y+1}=3\Rightarrow y=-\dfrac{2}{3}\end{matrix}\right.\)
\(d.\left\{{}\begin{matrix}\dfrac{2}{\sqrt{x-1}}-\dfrac{1}{\sqrt{y-1}}=1\\\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{y-1}}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a-b=1\\a+b=2\end{matrix}\right.\) (với \(\dfrac{1}{\sqrt{x-1}}=a-\dfrac{1}{\sqrt{y-1}}=b\))
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-1}}=1\Rightarrow x=2\\\dfrac{1}{\sqrt{y-1}}=1\Rightarrow y=2\end{matrix}\right.\)
x^2/((x+y)*(1-y))-y^2/((x+y)*(1+x))-(x^2*y^2)/((x+1)*(1-y))
tính H= 1/x(x+y) + 1/y(x+y) + 1/x(x-y) + 1/y(y-x) nếu x = 1+ 1/2014 và y = 1+ 1/2015
cần cách trình bày chứ kết quả biết rồi
Tiếp thu và sửa đổi. Cảm ơn ạ 🙆♀️
\(a) (x+y)+(y-x)\)
\(= x+y+y-x\)
\(=(x-x)+(y+y)\)
\(= 2y\)
\(b) (x+y)-(y-x)\)
\(= x+y-y+x\)
\(= (x+x)+(y-y)\)
\(= 2x\)
\(c) (x-y)+(y-x)\)
\(= x-y+y-x\)
\(= (x-x)+(y-y) \)
\(=0\)
\(e) (x^2+xy-1)+(3x^2+xy+1)\)
\(= x^2+xy-1+3x^2+xy+1\)
\(= (x^2+3x^2)+(xy+xy)+(1-1)\)
\(= 4x^2 + 2xy\)
\(g) (x^2+xy-1)-(3x^2+xy+1)\)
\(= x^2+xy-1-3x^2-xy-1\)
\(= (x^2-3x^2)+(xy-xy)-(1+1)\)
\(= -2x^2 - 2\)
Cho x,y>0,x+y=1.CM:`A=(x+1/x)^2+(y+1/y)^2>=25/2`
`A=x^2+1/x^2+2+y^2+1/y^2+2`
`=x^2+y^2+1/x^2+1/y^2+4`
`=(x^2+1/(16x^2))+(y^2+1/(16y^2))+4+15/16(1/x^2+1/y^2)`
Áp dụng BĐt cosi và `1/a^2+1/b^2>=8/(a+b)^2`
`=>A>=1/2+1/2+4+15/16(8/(x+y)^2)`
`<=>A>=5+15/2=25/2`
Dấu "=" `<=>x=y=1/2`
Không làm theo cách sau:
Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)
Dấu "=" \(x=y=\dfrac{1}{2}\)
Vẽ và tìm tọa độ giao điểm của:
1.y=x và y=2x-4 2.y=2x-1 và y=x+1
3.y=-2x-1 và y=x-4 4.y=-x+2 và y=x-1
5.y=-2x+3 và y=-x+1 6.y=-x+1 và y=x-3
7.y=2/3x + 1 và y=-1/2x-2 8.y=-x-2 và y=-2/3x-1
9.y=2x và y=x+2 10.y=-2x+5 và y=2x+1
11.y=-2x+3 và y=1/2x-2 12.y=-1/2x+1 và y=x-5
13.y=x-2 và y=1/3x 14.y=2/3x+1 và y=x
2: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x-1=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
GHPT: \(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\left(1\right)\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\left(2\right)\end{matrix}\right.\)
\(\xrightarrow[\left(1\right)-\left(2\right)]{\left(1\right)+\left(2\right)}\left\{{}\begin{matrix}2\left(\sqrt{x^2+x+y+1}+\sqrt{y^2+x+y+1}\right)=20\left(3\right)\\2\left(x+y\right)=16\Rightarrow x=8-y\left(4\right)\end{matrix}\right.\)
Thay (4) vào (3) và thu gọn ta được: \(\left(\sqrt{x^2+9}+\sqrt{y^2+9}\right)=10\left(5\right)\)
Kết hợp (4) và (5): \(\left\{{}\begin{matrix}x=8-y\\\sqrt{x^2+9}+\sqrt{y^2+9}=10\end{matrix}\right.\) rồi giải nốt :D good luck
Giải các hệ phương trình sau:
c.{ 2(x - 2) + 3(1 + y) = 2
{ 3(x - 2) - 2(1 + y) = -3
d.{ (x - 5)(y - 2) = (x + 2)(y - 1)
{ (x - 4)(y + 7) = (x - 3)(y + 4)
e.{ 1/x - 1/y = 1
{ 3/x + 4/y = 5
e: \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{3}{y}=3\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-7}{y}=-2\\\dfrac{1}{x}-\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\\dfrac{1}{x}=1+\dfrac{2}{7}=\dfrac{9}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\x=\dfrac{7}{9}\end{matrix}\right.\)