Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ánh Dương
Xem chi tiết
Trần Ái Linh
21 tháng 12 2020 lúc 23:35

a) \(x^2 (x+1)-2x(x+1)+x+1 \\ =(x+1)(x^2-2x+1)\\=(x+1)(x-1)^2\)

b) \(4x^2 -8x+3 \\= (2x^2)-2.2x .2 + 2^2 -1 \\=(2x-2)^2-1^2\\=(2x-2+1)(2x-2-1)\\= (2x-1)(2x-3)\)

Forty Four A Class
Xem chi tiết
Super Star 6a
10 tháng 7 2017 lúc 21:38

Khó quá , bó tay 

Hoàng Thị Lan Hương
11 tháng 7 2017 lúc 11:12

\(\left(x^2-2x+2\right)^4-20x^2\left(x^2-2x+2\right)+64x^4\)

\(=\left[\left(x^2-2x+2\right)^2\right]^2-2.\left(x^2-2x+2\right)^2.10x^2+\left(10x^2\right)^2-36x^4\)

\(=\left[\left(x^2-2x+2\right)^2-10x^2\right]^2-\left(6x^2\right)^2\)\(=\left[\left(x^2-2x+2\right)^2-4x^2\right]\left[\left(x^2-2x+2\right)^2-16x^2\right]\)

\(=\left(x^2-2x+2+2x\right)\left(x^2-2x+2-2x\right)\left(x^2-2x+2-4x\right)\left(x^2-2x+2+4x\right)\)

\(=\left(x^2+2\right)\left(x^2-4x+2\right)\left(x^2-6x+2\right)\left(x^2+2x+2\right)\)

Sky lilk Noob---_~Phó꧁ミ...
Xem chi tiết
Lấp La Lấp Lánh
19 tháng 8 2021 lúc 19:56

a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\left(1\right)=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-15=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)

Đặt \(t=x^2+5x+4\)

(1) trở thành: \(t\left(t+2\right)-15=t^2+2t+1-16=\left(t+1\right)^2-4^2=\left(t-3\right)\left(t+5\right)\)

Thay t: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15=\left(x^2+5x+4-3\right)\left(x^2+5x+4+5\right)=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)

b) \(\left(2x+5\right)^2-\left(x-9\right)^2=\left(2x+5-x+9\right)\left(2x+5+x-9\right)=\left(x+14\right)\left(3x-4\right)\)

Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 20:38

a: Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24-15\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+9\)

\(=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)

b: \(\left(2x+5\right)^2-\left(x-9\right)^2\)

\(=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\)

\(=\left(x+15\right)\left(3x-4\right)\)

Nguyễn Hữu Nguyên
Xem chi tiết
Trên con đường thành côn...
29 tháng 7 2021 lúc 10:13

undefined

Nguyễn Lê Phước Thịnh
29 tháng 7 2021 lúc 13:43

a) Ta có: \(x-2y+x^2-4y^2\)

\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x-2y\right)\left(x+2y+1\right)\)

b) Ta có: \(x^2+2xy+y^2-4x^2y^2\)

\(=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y+2xy\right)\left(x+y-2xy\right)\)

c) Ta có: \(x^6-x^4+2x^3+2x^2\)

\(=x^4\left(x-1\right)\left(x+1\right)+2x^2\left(x+1\right)\)

\(=\left(x+1\right)\left[x^4\left(x-1\right)+2x^2\right]\)

\(=x^2\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)

\(=x^2\left(x+1\right)\cdot\left(x^3-x^2+2\right)\)

d) Ta có: \(x^3+3x^2+3x+1-8y^3\)

\(=\left(x+1\right)^3-\left(2y\right)^3\)

\(=\left(x+1-2y\right)\left[\left(x+1\right)^2+2y\left(x+1\right)+4y^2\right]\)

\(=\left(x-2y+1\right)\left(x^2+2x+1+2xy+2y+4y^2\right)\)

Nguyễn Hữu Nguyên
Xem chi tiết
Nguyễn Huy Tú
6 tháng 8 2021 lúc 10:25

a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)

b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)

\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)

\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)

d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)

Nguyễn Lê Phước Thịnh
6 tháng 8 2021 lúc 11:20

a) Ta có: \(x-2y+x^2-4y^2\)

\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x-2y\right)\left(1+x+2y\right)\)

b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)

\(=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

Ngọc Thiện Hồ
Xem chi tiết
saadaa
13 tháng 8 2016 lúc 21:54

dat \(x^2-2x+2=y\)

ta co pt

\(y^4+20x^2y^2+64x^4\)

\(=\left(8x^2\right)^2+2.8x^2.\frac{10}{8}y^2+\left(\frac{10^{ }}{8^{ }}y^2\right)^2-\frac{36}{64}y^4\)

\(=\left(8x^2+\frac{10}{8}y^2\right)^2-\left(\frac{6}{8}y^2\right)^2\)

\(=\left(8x^2+\frac{y^2}{2}\right)\left(8x^2+2y^2\right)\)

bạn thay y  nữa là xong

Nguyễn Thiên Kim
13 tháng 8 2016 lúc 22:05

\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+64x^4\)

\(=\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+100x^4-36x^4\)

\(=\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^4\)

\(=\left(x^4-4x^3+18x^2-8x+4\right)^2-\left(6x^2\right)^2\)

\(=\left(x^4-4x^3+24x^2-8x+4\right)\left(x^4-4x^3+12x^2-8x+4\right)\)

Trần Văn Thành
14 tháng 8 2016 lúc 6:42

dat x 2 − 2x + 2 = y ta co pt y 4 + 20x 2 y 2 + 64x 4 = 8x 2 2 + 2.8x 2 . 8 10 y 2 + 8 10 y 2 2 − 64 36 y 4 = 8x 2 + 8 10 y 2 2 − 8 6 y 2 2 = 8x 2 + 2 y 2 8x 2 + 2y 2  hi kết bạn nha

Ngọc Thiện Hồ
Xem chi tiết
Nguyễn Phương HÀ
13 tháng 8 2016 lúc 20:06

\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)+64x^4\)

=\(\left[\left(x^2-2x+2\right)^4+2.10x^2\left(x^2-2x+2\right)^2+100x^4\right]\)-100x4+64x2

=\(\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^2\)

=\(\left[\left(x^2-2x+2\right)^2+4x^2\right].\left[\left(x^2-2x+2\right)^2+16x^2\right]\)

Lê Hải Anh Nguyễn
Xem chi tiết
Akai Haruma
22 tháng 8 2023 lúc 14:59

Lời giải:

a.

$64x^2-24y^2=8(8x^2-3y^2)=8(\sqrt{8}x-\sqrt{3}y)(\sqrt{8}x+\sqrt{3}y)$

b.

$64x^3-27y^3=(4x)^3-(3y)^3=(4x-3y)(16x^2+12xy+9y^2)$

c.

$x^4-2x^3+x^2=(x^2-x)^2=[x(x-1)]^2=x^2(x-1)^2$

d.

$(x-y)^3+8y^3=(x-y)^3+(2y)^3=(x-y+2y)[(x-y)^2-2y(x-y)+(2y)^2]$

$=(x+y)(x^2-4xy+7y^2)$

HT.Phong (9A5)
22 tháng 8 2023 lúc 15:00

a) \(64x^2-24y^2\)

\(=8\left(8x^2-3y^2\right)\)

b) \(64x^3-27y^3\)

\(=\left(4x\right)^3-\left(3y\right)^3\)

\(=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)

c) \(x^4-2x^3+x^2\)

\(=x^2\left(x^2-2x+1\right)\)

\(=x^2\left(x-1\right)^2\)

d) \(\left(x-y\right)^3+8y^3\)

\(=\left(x-y+2y\right)\left(x^2-2xy+y^2-2xy+2y^2+4y^2\right)\)

\(=\left(x+y\right)\left(x^2-4xy+7y^2\right)\)

Thuylinh
Xem chi tiết
HT.Phong (9A5)
22 tháng 7 2023 lúc 13:35

a) \(x\left(x-1\right)+\left(1-x\right)^2\)

\(=x\left(x-1\right)+\left(x-1\right)^2\)

\(=\left(x-1\right)\left(x+x-1\right)\)

\(=\left(x-1\right)\left(2x-1\right)\)

b) \(\left(x+1\right)^2-3\left(x+1\right)\)

\(=\left(x+1\right)\left[\left(x+1\right)-3\right]\)

\(=\left(x+1\right)\left(x+1-3\right)\)

\(=\left(x+1\right)\left(x-2\right)\)

c) \(2x\left(x-2\right)-\left(x-2\right)^2\)

\(=\left(x-2\right)\left[2x-\left(x-2\right)\right]\)

\(=\left(x-2\right)\left(2x-x+2\right)\)

\(=\left(x-2\right)\left(x+2\right)\)