Cho đường tròn (O) điểm A thuộc bán kính R, vẽ 2 dây AB; AC vuông góc vs nhau. Gọi M là trung điểm của AB, N là trung điểm của AC. Chwngsminh MN có độ dài ko đổi khi BÂC quay quanh điểm A
cho đường tròn O bán kính R, dây AB cố định. Điểm M thuộc cung lớn AB. Gọi I là trung điểm của dây AB. Vẽ đường tròn tâm O' qua M tiếp xúc với AB tại A. Tia MI cắt đường tròn tâm o' tại N và cắt đường tròn tâm O tại C. cm NA song sonh với BC?
cho đường tròn O bán kính R, dây AB cố định. Điểm M thuộc cung lớn AB. Gọi I là trung điểm của dây AB. Vẽ đường tròn tâm O' qua M tiếp xúc với AB tại A. Tia MI cắt đường tròn tâm o' tại N và cắt đường tròn tâm O tại C. cm NA song sonh với BC?
Xét (O'): \(O'A\perp AB\) tại A và O'A là bán kính.
\(\Rightarrow\)AB là tiếp tuyến của (O') tại A.
\(\Rightarrow\widehat{NAB}\) là góc tạo bởi tiếp tuyến và dây cung chắn cung AN.
Mặt khác \(\widehat{AMN}\) là góc nội tiếp chắn cung AN.
\(\Rightarrow\widehat{AMN}=\widehat{NAB}\left(1\right)\)
Xét (O): \(\widehat{AMC}=\widehat{ABC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\widehat{NAB}=\widehat{ABC}\) nên AN//BC.
Cho 2 đường tròn đồng tâm O có bán kính R và r (R>r).A,M là 2 điểm thuộc đường tròn nhỏ (A di động,M cố định).Qua M vẽ dây BC của đường tròn lớn sao cho BC\(\perp\)AM.
a) Chứng minh tổng \(MA^2+MB^2+MC^2\) không phụ thuộc vào A
b) chứng minh trọng tâm G của tam giác ABC cố định
Cho 2 đường tròn đồng tâm O có bán kính R và r (R>r).A,M là 2 điểm thuộc đường tròn nhỏ (A di động,M cố định).Qua M vẽ dây BC của đường tròn lớn sao cho BC⊥⊥AM.
a) Chứng minh tổng \(MA^2+MB^2+MC^2\) không phụ thuộc vào A
b) chứng minh trọng tâm G của tam giác ABC cố định
a.
Gọi D là trung điểm BC \(\Rightarrow OD\perp BC\)
Gọi E là trung điểm AM \(\Rightarrow OE\perp AM\)
\(\Rightarrow\) Tứ giác OEMD là hình chữ nhật (có 3 góc vuông)
\(\Rightarrow MD=OE\) và \(ME=OD\)
\(MA^2+MB^2+MC^2=MA^2+\left(BD-MD\right)^2+\left(DC+MD\right)^2\)
\(=\left(2ME\right)^2+\left(BD-MD\right)^2+\left(BD+MD\right)^2\) (do \(BD=CD\))
\(=4ME^2+2BD^2+2MD^2\)
\(=2\left(ME^2+BD^2\right)+2\left(ME^2+MD^2\right)\)
\(=2\left(OD^2+BD^2\right)+2\left(OD^2+MD^2\right)\)
\(=2OB^2+2OM^2\)
\(=2R^2+2r^2\) cố định (đpcm)
b. Gọi G là giao điểm OM và AD
Theo c/m câu a ta có \(\left\{{}\begin{matrix}OD||AM\\OD=EM=\dfrac{1}{2}AM\end{matrix}\right.\)
Theo định lý Talet: \(\dfrac{DG}{AG}=\dfrac{OD}{AM}=\dfrac{OG}{GM}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}AG=\dfrac{2}{3}AD\\OG=\dfrac{1}{3}OM\end{matrix}\right.\)
Do O, M cố định \(\Rightarrow\) G cố định
Mặt khác trong tam giác ABC do D là trung điểm AB \(\Rightarrow\) AD là trung tuyến
Mà \(AG=\dfrac{2}{3}AD\Rightarrow\) G là trọng tâm tam giác ABC
\(\Rightarrow\) Trọng tâm tam giác ABC cố định
Cho đường tròn (O) đường kính AB. Vẽ dây CD không qua tâm vuông góc với AB tại I (A thuộc cung nhỏ CD) biết CD=16cm ; IA=6cm. Tính bán kính của (O;R)
Xét (O) có
ΔACB nội tiếp
AB là đường kính
=>ΔACB vuông tại C
ΔOCD cân tại O
mà OI là đường cao
nên I là trung điểm của CD
=>IC=ID=CD/2=8cm
Xét ΔCAB vuông tại C cso CI là đường cao
nên CI^2=IA*IB
=>8^2=6*IB
=>IB=64/6=32/3(cm)
AB=IB+IA=32/3+6=50/3(cm)
=>R=50/3:2=25/3(cm)
Cho đường tròn tâm O, bán kính R. M là điểm nằm ngoài đường tròn. Vẽ tiếp tuyển MA của đường tròn (A là tiếp điểm). Vẽ đường kính AB của (O), MB cắt (O) tại C. Gọi D là trung điểm của dây BC. a) Chứng minh 4 điểm: M, A, O, D cùng nằm trên một đường tròn. b) Chứng minh 4Rẻ=BC BM
a: Xét tứ giác MAOD có
\(\widehat{MAO}+\widehat{ODM}=180^0\)
Do đó: MAOD là tứ giác nội tiếp
Cho đường tròn tâm O bán kính R,dây AB = R.căn 3 .Vẽ đường kính CD vuông góc AB(C thuộc cung AB lớn).Trên cung AC lấy M.Vẽ dây AN//CM.Tính MN
Cho đường tròn (O) có bán kính R và một điểm A sao cho OA=2R, vẽ các tiếp tuyến AB, AC với (O) (B và C là các tiếp điểm). Vẽ đường kính BOD a)Chứng minh 4 điểm A,B,O,C cùng thuộc một đường tròn b)Chứng minh DC//OA c)Đường trung trực của BD cắt AC và BD lần lượt tại S và E. Chứng minh tứ giác OCEA là hình thang cân
Bài IV (3,5 điểm) Cho nửa đường tròn tâm O, bán kính R, đường kính AB. Điểm C thuộc đoạn AB (C khác B;A). Trên cùng nửa mặt phẳng bờ AB có chứa nửa (O;R). Vẽ nửa đường tròn tâm I, đường kính AC và nửa đường tròn tâm J, đường kính BC. Qua C kẻ đường thẳng vuông góc với AB cắt (O;R) tại D. DA cắt nửa đường tròn tâm I tại M, DB cắt nửa đường tròn tâm J tại N
1) Chứng minh rằng: Tứ giác MDNC là hình chữ nhật
2) Chứng minh rằng: Tứ giác AMNB nội tiếp.
3) Chứng minh rằng: OD vuông góc MN
4) Tìm vị trí của C trên AB để bán kính đường tròn ngoại tiếp tứ giác AMNB lớn nhất.