Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thư Đỗ Ngọc Anh
Xem chi tiết
Minh Hiếu
28 tháng 12 2021 lúc 20:44

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 22:00

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

Hoàng Thị Hà My
Xem chi tiết
Hoàng Ngọc Hải
8 tháng 1 2019 lúc 9:29

a) Ta có:

 S=51+52+53+...+596 gồm 96 số hạng

   =(51+52+...+56)+(57+58+...+512)+...+(591+592+...+596)

   =(51+52+...+56)+56.(51+52+...+56)+...+585.(51+52+...+56)

   =19530+56.19530+...+585.19530

   =19530.(1+55+...+585)

 Vậy: S chia hết cho 126(Vì 19530 chia hết cho 126)

 b) Vì S chia hết cho 19530 nên S có tận cùng bằng 0(19530=1953.10)

ʚßồ Çôйǥ Ąйɦɞ
Xem chi tiết
Lê Hoàng
21 tháng 3 2020 lúc 21:46

\(S=5+5^2+5^3+...+5^{2008}\)

a) Ta có: \(126=5^0+5^3\)

\(5+5^4=5\left(5^0+5^3\right)\text{ }⋮\text{ }126,\text{ }5^2+5^5=5^2\left(5^0+5^3\right)\text{ }⋮\text{ }126,...\)

Áp dụng lần lượt như thế, ta có:

\(\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)+\left(5^8+5^{11}\right)+\left(5^9+5^{12}\right)+...+\left(5^{2005}+5^{2008}\right)\text{ }⋮\text{ }126\)

Còn thiếu \(5^{2006}+5^{2007}\), ta có: \(5^{2006}+5^{2007}=5^{2006}\left(5^0+5^1\right)=5^{2006}\cdot6=2\cdot3\cdot5^{2006}\)

Trong khi đó: \(126=2\cdot3^2\cdot7\)

Ta dễ thấy \(5^{2006}+5^{2007}\) không chia hết cho \(3\cdot7=21\), nên \(5^{2006}+5^{2007}\) không chia hết cho 126.

Từ đó suy ra S không chia hết cho 126.

b) Tất cả các số hạng đều có chữ số tận cùng là 5.

Biểu thức S có \(\left(2008-1\right)+1=2008\) số hạng cộng lại với nhau.

=> S có chữ số tận cùng là 0 (vì số lượng các số hạng cộng lại với nhau là số chẵn)

Khách vãng lai đã xóa
đinh văn tiến d
Xem chi tiết
đinh văn tiến d
Xem chi tiết
Akai Haruma
25 tháng 2 2023 lúc 16:03

Lời giải:
$S=(2+2^2)+(2^3+2^4)+....+(2^{23}+2^{24})$

$=2(1+2)+2^3(1+2)+....+2^{23}(1+2)$

$=(1+2)(2+2^3+...+2^{23})$

$=3(2+2^3+...+2^{23})\vdots 3$

b.

$S=2+2^2+2^3+...+2^{23}+2^{24}$

$2S=2^2+2^3+2^4+....+2^{24}+2^{25}$

$\Rightarrow 2S-S=2^{25}-2$

$\Rightarrow S=2^{25}-2$

Ta có:

$2^{10}=1024=10k+4$

$\Rightarrow 2^{25}-2=2^5.2^{20}-2=32(10k+4)^2-2=32(100k^2+80k+16)-2$
$=10(320k^2+8k+51)\vdots 10$

$\Rightarrow S$ tận cùng là $0$

 

sunny
Xem chi tiết
Kiều Vũ Linh
14 tháng 10 2023 lúc 12:48

S = 2¹ + 2² + 2³ + ... + 2⁶⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2⁵⁷ + 2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2⁵⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + 2⁵⁶.30

= 30.(1 + 2⁴ + ... + 2⁵⁶)

= 10.3.(1 + 2⁴ + ... + 2⁵⁶) ⋮ 10

Vậy chữ số tận cùng của S là 0

*) S = 2¹ + 2² + 2³ + ... + 2⁶⁰

= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 14 + 2³.(2 + 2² + 2³) + ... + 2⁵⁷.(2 + 2² + 2³)

= 14 + 2³.14 + ... + 2⁵⁷.14

= 14.(1 + 2³ + ... + 2⁵⁷) ⋮ 14

Vậy S ⋮ 14

dâu cute
Xem chi tiết
Phạm Thị Thảo Duyên
Xem chi tiết
Pain Thiên Đạo
23 tháng 12 2017 lúc 22:53

(5+5^4)+(5^2+5^5)+(5x^3+5x^6)+.....+(5^93+5^96)

5(1+125)+5^2(1+125)+5^3(1+125)+.....+5^93(1+125)

126(5+5^2+5^3+.........+5^93)

b) 5

huynh vo thien kim
Xem chi tiết
Võ Đông Anh Tuấn
27 tháng 11 2016 lúc 11:12

a,S=5+52+53+..........+596

S=(5+52+53+54+55+56)+.............+(591+592+593+594+595+596)

S=5.(1+5+52+53+54+55)+............+591.(1+5+52+53+54+55)

S=5.31.126+..............+591.31.126

S=(5.31+..............+591.31).126 chia hết cho 126(Đpcm)

b,5S=52+53+54+55+...............+597

5S-S=4S=597-5

\(S=\frac{5^{97}-5}{2}\)

Mà 597-5=(54)24.5-5=062524.5-5=....0625.5-5=..........3125-5=.........3120

=>S=.........3120:2

=>S=............0