2x2 - 6x + 4 = 3√(x3 +8)
Tìm x, biết:
a) 2(5x-8)-3(4x-5) = 4(3x-4) + 11;
b) 2 x ( 6 x - 2 x 2 ) + 3 x 2 ( x - 4 ) = 8;
c) 2 ( x 3 - 1 ) - 2 x 2 ( x + 2 x 4 ) + ( 4 x 5 + 4 ) x = 6;
d)(2x)2(4x-2)-(x3 -8x2) = 15.
a) x = 2 7 b) x = 2.
c) x = 2 d) x = 1.
a) \(x^3-x^2+3x-3>0\)
\(\Leftrightarrow x^2\left(x-1\right)+3\left(x-1\right)>0\)
\(\Leftrightarrow\left(x^2+3\right)\left(x-1\right)>0\)
Mà: \(x^2+3>0\forall x\)
\(\Leftrightarrow x-1>0\)
\(\Leftrightarrow x>1\)
b) \(x^3+x^2+9x+9< 0\)
\(\Leftrightarrow x^2\left(x+1\right)+9\left(x+1\right)< 0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+1\right)< 0\)
Mà: \(x^2+9>0\forall x\)
\(\Leftrightarrow x+1< 0\)
\(\Leftrightarrow x< -1\)
d) \(4x^3-14x^2+6x-21< 0\)
\(\Leftrightarrow2x^2\left(2x-7\right)+3\left(2x-7\right)< 0\)
\(\Leftrightarrow\left(2x^2+3\right)\left(2x-7\right)< 0\)
Mà: \(2x^2+3>0\forall x\)
\(\Leftrightarrow2x-7< 0\)
\(\Leftrightarrow2x< 7\)
\(\Leftrightarrow x< \dfrac{7}{2}\)
d) \(x^2\left(2x^2+3\right)+2x^2>-3\)
\(\Leftrightarrow2x^4+3x^2+2x^2+3>0\)
\(\Leftrightarrow2x^4+5x^2+3>0\)
\(\Leftrightarrow\left(x^2+1\right)\left(2x^2+3\right)>0\)
Mà:
\(x^2+1>0\forall x\)
\(2x^2+3>0\forall x\)
\(\Rightarrow x\in R\)
a: =>x^2(x-1)+3(x-1)>0
=>(x-1)(x^2+3)>0
=>x-1>0
=>x>1
b: =>x^2(x+1)+9(x+1)<0
=>(x+1)(x^2+9)<0
=>x+1<0
=>x<-1
c: 4x^3-14x^2+6x-21<0
=>2x^2(2x-7)+3(2x-7)<0
=>2x-7<0
=>x<7/2
d: =>x^2(2x^2+3)+2x^2+3>0
=>(2x^2+3)(x^2+1)>0(luôn đúng)
Bài 2 (2 đ): Cho các đa thức sau:
P(x) = x3 – 6x + 2
Q(x) = 2x2 - 4x3 + x - 5
a) Tính P(x) + Q(x)
b) Tính P(x) - Q(x)
Bài 3 (2đ): Tìm x biết:
a. (x - 8 )( x3+ 8) = 0
b. (4x - 3) – ( x + 5) = 3(10 - x)
Bài 2
P(x) + Q(x) = x3 – 6x + 2 + 2x2 - 4x3 + x - 5 = - 3x3 + 2x2 – 5x - 3
P(x) - Q(x) = x3 – 6x + 2 - 2x2 + 4x3 - x + 5 = 5x3 − 2x2 − 7x+7
Bai 3
a)(x-8)(x3+8)=0
=>x-8=0 hoac x3+8=0
=>x =8 hoac x3 =-8
=>x =8 hoac x =-2
Vậy x=8 hoặc x=-2
b)(4x-3)-(x+5)=3(10-x)
=>4x-3-x-5=30-3x
=>4x-x+3x=30+3+5
=>x(4-1+3)=38
=>6x =38
=>x =\(\dfrac{38}{6}\)
=>x =\(\dfrac{19}{3}\)
Vậy x=\(\dfrac{19}{3}\)
Giải PT
a) x3+(x-5)(x+8)= 2x2-37
b)x(x-1)(x+1)(x+2)=24
c)(x2-6x+9)-15(x2-6x+10)=
a)
\(x^3+\left(x-5\right)\left(x+8\right)=2x^2-37\\ \Leftrightarrow x^3+x^2+3x-40=2x^2-37\\ \Leftrightarrow x^3-x^2+3x-3=0\\ \Leftrightarrow x^2\left(x-3\right)+3\left(x-3\right)=0\\ \Leftrightarrow\left(x^2+3\right)\left(x-3\right)=0\)
Vì \(x^2+3\ge3>0\Rightarrow x-3=0\\ \Leftrightarrow x=3\)
b)
\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\\ \Leftrightarrow\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]=24\\ \Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
Đặt \(x^2+x=y\)
\(\Rightarrow y\left(y-2\right)=24\\ \Leftrightarrow y^2-2y+1=25\\ \Leftrightarrow\left(y-1\right)^2=25\\ \Leftrightarrow\left[{}\begin{matrix}y-1=5\\y-1=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}y=6\\y=-4\end{matrix}\right.\)
Nếu y = 6
\(\Rightarrow x^2+x=6\\ \Leftrightarrow x^2+x-6=0\\ \Leftrightarrow x^2+2x-3x-6=0\\ \Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Nếu y = -4
\(\Rightarrow x^2+x=-4\\ \Leftrightarrow x^2+x+\dfrac{1}{4}=-4+\dfrac{1}{4}\\ \Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=-\dfrac{15}{4}\)
Mà \(\left(x+\dfrac{1}{.2}\right)^2\ge0>-\dfrac{15}{4}\)
`=> Loại`
c) Vế còn lại là bao nhiêu?
1. (x3 – 3x2 + x – 3) : (x – 3) 2. (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3) 3. (x – y – z)5 : (x – y – z)3 4. (x2 + 2x + x2 – 4) : (x + 2) 5. (2x3 + 5x2 – 2x + 3) : (2x2 – x + 1) 6. (2x3 – 5x2 + 6x – 15) : (2x – 5)
1: \(=x^2+1\)
3: \(=\left(x-y-z\right)^2\)
Cứu với ạ
Làm tính chia
1) (x3 – 3x2 + x – 3) : (x – 3) 2) (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3)
3) (x – y – z)5 : (x – y – z)3 4) (x2 + 2x + x2 – 4) : (x + 2)
5) (2x3 + 5x2 – 2x + 3) : (2x2 – x + 1) | 6) (2x3 – 5x2 + 6x – 15):(2x – 5) |
11,18y2 - 12xy + 2x2
12,(x2+x)2 + 3(x2+x) + 2
13,5x2 - 10xy + 5y2 - 20z2
14,x3 - 9x + 2x2 - 18
15,x2 - 2x - 4y2 - 4y
16,a2 + 2ab + b2 - 2a - 2b + 1
17,x3 - x + 3x2 y + 3xy2 + y3 - y
18,x3 + y3 + z3 - 3xyz
19,x2 + 4x - 5
20,2x2 - 6x - 8
21,x2 - 10xy + 9y2
22,5xz - 5xy - x2 + 2xy - y2
23,(x2 + x + 1) ( x2 + x + 2) - 12
24,(x+1) (x+2) (x+3) (x+4) - 24
25,x3 + 2x2 - 2x - 12
11: \(2x^2-12xy+18y^2\)
\(=2\left(x^2-6xy+9y^2\right)\)
\(=2\left(x-3y\right)^2\)
12: \(\left(x^2+x\right)^2+3\left(x^2+x\right)+2\)
\(=\left(x^2+x+2\right)\left(x^2+x+1\right)\)
Giải phương trình:
a) 2x2 + 3x - 27 =0
b) -10x2 + x + 3 =0
c) -x3 + x2 + 4 =0
d) x3 - 4x2 - 8x +8 =0
a: =>2x^2+9x-6x-27=0
=>x(2x+9)-3(2x+9)=0
=>(2x+9)(x-3)=0
=>x=3 hoặc x=-9/2
b: =>-10x^2+6x-5x+3=0
=>-2x(5x-3)-(5x-3)=0
=>(5x-3)(-2x-1)=0
=>x=-1/2 hoặc x=5/3
c: =>-x^3+2x^2-x^2+4=0
=>-x^2(x-2)-(x-2)(x+2)=0
=>(x-2)(-x^2-x-2)=0
=>x-2=0
=>x=2
d: =>(x^3+8)-4x(x+2)=0
=>(x+2)(x^2-2x+4)-4x(x+2)=0
=>(x+2)(x^2-6x+4)=0
=>x=-2 hoặc \(x=3\pm\sqrt{5}\)
Giải các phương trình sau:
a) 1 − 2 x 2 = 3 x x − 3 + x − 1 2 ;
b) 1 + x 3 + 1 − x 3 = 6 x + 1 2 ;
c) x − 4 4 − x + 3 = x 3 − 2 − x 6 ;
d) 5 x + 3 x − 4 5 15 = 3 − x 15 + 7 x 5 + 1 − x .
a) x = 0 b) x = - 1 3
c) x = 28 15 d) x = -82.
phân tích đa thức thành nhân tử
a) 1+6x-6x2-x3
b) x3-4x2+8x-8
c) x3+2x2+2x+1
d) 8x3-12x2+6x-1
a) Ta có: \(1+6x-6x^2-x^3\)
\(=\left(1-x\right)\left(x^2+x+1\right)+6x\left(1-x\right)\)
\(=\left(1-x\right)\left(x^2+7x+1\right)\)
b:Ta có: \(x^3-4x^2+8x-8\)
\(=\left(x-2\right)\left(x^2+2x+4\right)-4x\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-2x+4\right)\)
c: Ta có: \(x^3+2x^2+2x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
d: Ta có: \(8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)