cho a,b,c>0 và a+b+c=3
Tìm Max A=\(\sqrt{2a+b+1}+\sqrt{2b+c+1}+\sqrt{2c+a+1}\)
cho a,b,c>0 và a+b+c=3
Tìm Max A=\(\sqrt{2a+b+1}+\sqrt{2b+c+1}+\sqrt{2c+a+1}\)
Có \(\sqrt{2a+b+1}\le\frac{2a+b+1+4}{4}\)
Tương tự \(\sqrt{2b+c+1}\le\frac{2b+c+1+4}{4},\sqrt{2c+a+1}\le\frac{2c+a+1+4}{4}\)
\(\Rightarrow A\le\frac{2a+b+1+2c+a+1+2b+c+1+4+4+4}{4}=6\)
dấu = xảy ra khi a=b=c và a+b+c=3=>a=b=c=1
Cho a,b,c\(\ge0\)thỏa mãn\(a+b+c=1\)
a)Tìm max A=\(\sqrt{2a^2+a+1}+\sqrt{2b^2+b+1}+\sqrt{2c^2+c+1}\)
b)Tìm min,max B=\(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\)
c)Tìm min,max C=\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\)
1) cho a;b;c ko âm .chứng minh \(\sqrt{\frac{a+2b}{3}}+\sqrt{\frac{b+2c}{3}}+\sqrt{\frac{c+2a}{3}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}\)
2) cho a;;b;c dương và abc=1. chứng minh \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\ge\frac{3}{2}\)
Bài 1:
\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)
Cộng theo vế 3 BĐT trên ta có:
\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2
Bài 2/
\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)
\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
bạn alibaba dòng thứ nhất rồi sao ra được dòng thứ hai á bạn mình k hiểu
cho a,b,c >0 và a+b+c=3 .chứng minh \(\dfrac{1}{\sqrt{2a^2+1}}+\dfrac{1}{\sqrt{2b^2+1}}+\dfrac{1}{\sqrt{2c^2+1}}\ge\sqrt{3}\)
Cho a,b,c>0.Tìm Max:
\(A=\sqrt{\frac{2a}{a+b}}+\sqrt{\frac{2b}{b+c}}+\sqrt{\frac{2c}{c+a}}\)
Trước hết ta chứng minh BĐT quen thuộc:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Thật vậy:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{1}{9}.3\sqrt[3]{a.b.c}.3\sqrt[3]{ab.bc.ca}\)
\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)=\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
Ta có:
\(A^2=\left(\sqrt{a+c}.\sqrt{\frac{2a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{a+b}.\sqrt{\frac{2b}{\left(a+b\right)\left(b+c\right)}}+\sqrt{b+c}\sqrt{\frac{2c}{\left(c+a\right)\left(b+c\right)}}\right)^2\)
\(\Rightarrow A^2\le\left(a+c+a+b+b+c\right)\left(\frac{2a}{\left(a+b\right)\left(a+c\right)}+\frac{2b}{\left(a+b\right)\left(b+c\right)}+\frac{2c}{\left(c+a\right)\left(b+c\right)}\right)\)
\(\Rightarrow A^2\le\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}=9\)
\(\Rightarrow A\le3\)
\(A_{max}=3\) khi \(a=b=c\)
Cho a+b+c = 3. Tìm MAX của :
M= \(\sqrt{2a+5\sqrt{ab}+2b}+\sqrt{2b+5\sqrt{bc}+2c}+\sqrt{2c+5\sqrt{ac}+2a}\)
Đề thiếu nhé, a,b,c >0
Áp dụng BĐT Bunhiacopxki, ta có:
\(M^2=\left(\sqrt{2a+5\sqrt{ab}+2b}+\sqrt{2b+5\sqrt{bc}+2c}+\sqrt{2c+5\sqrt{ca}+2a}\right)^2\)
\(\le3\left[4\left(a+b+c\right)+5\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\right]\)
\(\le3\left[4\left(a+b+c\right)+5\left(a+b+c\right)\right]=81\)
\(\Rightarrow M\le9\)
\(MaxM=9\Leftrightarrow a=b=c=1\)
(\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le\sqrt{\left(a+b+c\right)\left(a+b+c\right)}=a+b+c\left(Bunhiacopxki\right)\))
Cho a;b;c > 0 thỏa mãn a + b + c = 1.
Tìm GTLN của biểu thức: \(T=\sqrt{2a+b}+\sqrt{2b+c}+\sqrt{2c+a}\)
Áp dụng BĐT Cauchy cho 2 số dương:
\(\sqrt{2a+b}=\sqrt{\left(2a+b\right).1}\le\dfrac{2a+b+1}{2}\)
CMTT: \(\sqrt{2b+c}\le\dfrac{2b+c+1}{2},\sqrt{2c+a}\le\dfrac{2c+a+1}{2}\)
\(\Rightarrow T=\sqrt{2a+b}+\sqrt{2b+c}+\sqrt{2c+a}\le\dfrac{2a+b+1+2b+c+1+2c+a+1}{2}=\dfrac{3\left(a+b+c\right)+3}{2}=\dfrac{3+3}{2}=\dfrac{6}{2}=3\)
\(maxT=3\Leftrightarrow2a+b=2b+c=2c+a=1=a+b+c\)
\(\Leftrightarrow a=b=c=\dfrac{1}{3}\)
cho các số thực không âm a b c sao cho a+b+c=1
tìm min max P = \(\sqrt{a^2+2b^2}\) + \(\sqrt{b^2+2c^2}\) + \(\sqrt{c^2+2a^2}\)
thầy Lâm giúp em bài này với
Áp dụng BĐT Mincopxki:
\(P\ge\sqrt{\left(a+b+c\right)^2+2\left(a+b+c\right)^2}=\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Lại có do \(a;b;c\ge0\) nên:
\(a^2+2b^2\le a^2+2\sqrt{2}ab+2b^2=\left(a+\sqrt{2}b\right)^2\)
\(\Rightarrow\sqrt{a^2+2b^2}\le a+\sqrt{2}b\)
Tương tự và cộng lại:
\(\Rightarrow P\le\left(\sqrt{2}+1\right)\left(a+b+c\right)=\sqrt{2}+1\)
Dấu "=" xảy ra tại \(\left(a;b;c\right)=\left(1;0;0\right)\) và các hoán vị
\(a;b\ge0\Rightarrow ab\ge0\)
\(\Rightarrow a^2+2b^2+2\sqrt{2}ab\ge a^2+2b^2\)
a) cho a,b,c không âm ; a+b+c=1 . tìm Max S
biết \(S=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{a+c}\)
b)a,b,c,d không âm ; a+b+c+d=1,tìm Max S
Biết \(S=\sqrt[3]{2a+b}+\sqrt[3]{2b+c}+\sqrt[3]{2c+d}+\sqrt[3]{2d+a}\)