Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan PT

Cho a,b,c>0.Tìm Max:

\(A=\sqrt{\frac{2a}{a+b}}+\sqrt{\frac{2b}{b+c}}+\sqrt{\frac{2c}{c+a}}\)

Nguyễn Việt Lâm
29 tháng 10 2020 lúc 15:21

Trước hết ta chứng minh BĐT quen thuộc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Thật vậy:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{1}{9}.3\sqrt[3]{a.b.c}.3\sqrt[3]{ab.bc.ca}\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)=\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Ta có:

\(A^2=\left(\sqrt{a+c}.\sqrt{\frac{2a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{a+b}.\sqrt{\frac{2b}{\left(a+b\right)\left(b+c\right)}}+\sqrt{b+c}\sqrt{\frac{2c}{\left(c+a\right)\left(b+c\right)}}\right)^2\)

\(\Rightarrow A^2\le\left(a+c+a+b+b+c\right)\left(\frac{2a}{\left(a+b\right)\left(a+c\right)}+\frac{2b}{\left(a+b\right)\left(b+c\right)}+\frac{2c}{\left(c+a\right)\left(b+c\right)}\right)\)

\(\Rightarrow A^2\le\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}=9\)

\(\Rightarrow A\le3\)

\(A_{max}=3\) khi \(a=b=c\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nghiêm Thị Nhân Đức
Xem chi tiết
Ngọc Hạnh
Xem chi tiết
Ngọc Hạnh
Xem chi tiết
Bảo Ngọc Trần
Xem chi tiết
Bánh Mì
Xem chi tiết
Đạt Trần Tiến
Xem chi tiết
Nguyễn Thị Thanh Nhàn
Xem chi tiết
Ha Hoang Vu Nhat
Xem chi tiết
Diệu Linh
Xem chi tiết