Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\text{VT}=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\geq \frac{(a^2+b^2+c^2)^2}{a^2+2ab+b^2+2bc+c^2+2ac}\)
\(\Leftrightarrow \text{VT}\geq \frac{(a^2+b^2+c^2)^2}{(a+b+c)^2}\) (1)
Theo hệ quả của BĐT AM-GM thì ta có:
\(a^2+b^2+c^2\geq ab+bc+ac\Leftrightarrow 3(a^2+b^2+c^2)\geq (a+b+c)^2\) (2)
Từ \((1),(2)\Rightarrow \text{VT}\geq \frac{a^2+b^2+c^2}{3}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c>0\)